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ABSTRACT

Inhomogeneous color distribution and intensity impose major
difficulty in fully automated histopathological image (histo-
image) segmentation. In this paper, we propose a novel deep
learning framework for histo-image segmentation. We in-
novate a noise-tolerant layer to the output layer of a deep
learning image segmentation framework U-Net, which alle-
viates the requirement of accurately segmented training im-
ages and enables “unsupervised” histo-image segmentation
by taking noisy segmentation results of traditional image seg-
mentation algorithms as the training outputs. We implement
noise-tolerant U-Net for histo-image segmentation to study
Duchenne Muscular Dystrophy (DMD), a muscle degenera-
tive disease. Performance comparison with traditional algo-
rithms and the original U-Net demonstrates the great potential
of the proposed noise-tolerant U-Net for histo-image segmen-
tation.

Index Terms— Image segmentation, deep learning, U-
Net, noisy labels

1. INTRODUCTION
Histopathological images (histo-images) have been the stan-
dard modality in clinical research for quantification of po-
tential disease biomarkers providing the critical disease pro-
gression information [1]. For example, to assess the pro-
gression of recessive X-linked disease Duchenne Muscular
Dystrophy (DMD), fibrosis has been considered an impor-
tant biomarker since the change of the proportion of muscle
and fibrosis through histo-image analysis provides prognostic
clue of the disease [2, 3, 4]. When studying fibrosis in DMD,
histo-images are usually of Hematoxylin-Eosin (H&E) stain-
ing, with muscle stained red, fibrosis stained blue, and the
remaining parts, such as connective tissue, kept white [5]. It
is hence critical to accurately segment muscle and fibrosis for
reliable quantitative disease prognosis.

However, inhomogeneous color intensity and distribution
has been a major obstacle hampering accurate histo-image
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segmentation. Although such color inhomogeneity caused
by staining and scanning can be reduced by image normal-
ization methods [1], fully automated image segmentation by
traditional algorithms still does not provide satisfactory accu-
racy [6]. For instance, traditional adaptive thresholding based
segmentation method cannot easily generate satisfactory re-
sults due to the difficulty in obtaining the optimal threshold
in varying color intensity across histo-images [7]. K-means
clustering [8] for color groups of interest can totally fail in the
cases where there are not enough similar pixels corresponding
to a specific cluster of interest, for example, fibrosis in DMD.

Deep learning has had huge success in image classifi-
cation, as witnessed from AlexNet, VGGNet to ResNet [9,
10, 11]. It also can achieve the highest accuracies in several
biomedical image segmentation challenges [12, 13]. For ex-
ample, an end-to-end convolutional neural network (CNN)
architecture – U-Net – has obtained accurate neuronal struc-
ture segmentation in electron microscopic images [12]. The
main reason of overwhelming performance by deep learning
is its capability of deriving better and richer image features
in a data-driven fashion [9, 10, 11]. This motivates the deep
learning histo-image segmentation based on invariant features
accounting for image appearance variation. In [13], U-Net
has been extended to a multi-level framework that achieves
top performance in histo-image segmentation challenges.

These existing CNN-based image segmentation methods
take supervised solutions and require manually labeled seg-
mentations for training. However, this is contradictory to
the essential aim of computer-aided histo-image analysis as
manual histo-image annotation, especially considering pixel-
based labeling for segmenting images in such an ultrahigh res-
olution, is often time-consuming and error-prone [1, 6, 14].
Although there is a recent trend of unsupervised histo-image
analysis [15], they are mostly for classification of the whole
histo-image, for example for cancer prognosis. To best of
our knowledge, there does not exist unsupervised deep learn-
ing histo-image segmentation, as required in our DMD histo-
image analysis.

As manually segmented histo-images are difficult to ob-
tain, we modified the original U-Net framework to a noise-
tolerant U-Net (Figure 1) for “unsupervised” histo-image seg-
mentation. With proposed noise-tolerant U-Net, we can take
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Fig. 1. Schematic illustrations of U-Net (without the extra linear layer in the red box) and our noise-tolerant U-Net (with the
extra layer). The sizes of input images or feature maps with the corresponding numbers of features are denoted under each box.

noisy segmentation results, for example from Otsu’s method
or K-Means clustering, to train the network and still achieve
high segmentation accuracy in testing images demonstrated
in DMD histo-image segmentation.

2. METHOD
In this section, before presenting our noise-tolerant U-Net, we
first briefly describe the necessary image pre-processing steps
for DMD histo-images.

2.1. Image pre-processing
Due to the typical ultrahigh resolution (227nm/pixel) of histo-
images, we first split the whole histo-image slide into sub-
images (split images) for further analysis [1, 6, 14]. In this pa-
per, we use the function ndpisplit provided in [16] to split
the whole slide into 512×512 split images. In order to reduce
potentially imbalanced color distributions across split images,
we further adopt the stain normalization method [17] to nor-
malize the split images. Three examples of pre-processed
split images are given in the first column of Figure 3.

2.2. U-Net
U-Net is an image-to-image deep learning framework shown
to be effective in biomedical image segmentation [12, 13].
Unlike CNN-based deep learning with only contracting lay-
ers for image classification and annotation, U-Net adds an ex-
panding module to enable pixel-wise labeling (Figure 1). In
our implementation, 3×3 multi-scale convolutional filters fol-
lowed by rectified linear units (ReLU) are applied in three lev-
els of the contracting layers. Between every two layers, 2× 2
max-pooling is applied to derive more abstract non-linear fea-
tures. For expanding layers, the derived feature maps are up-
sampled twice and concatenated with the convolutional fea-
ture maps at the corresponding scale of the contracting layers.
Another two convolutional layers and a final softmax output
layer are then applied to derive the final pixel-wise labeling
for histo-image segmentation. Such a U-Net implementation
has a 15-layer network architecture as shown in Figure 1.

U-Net is a supervised deep learning framework, requir-
ing accurate segmentation labels for training. However, for
our DMD histo-images, manually annotated histo-images are
not available. In order to enable U-Net histo-image segmen-
tation, one work-around is to apply traditional image seg-
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Fig. 2. Illustration of the “noise-tolerant” layer

mentation algorithms, such as K-Means, and use the resulting
segmentations with reasonably high accuracy to train U-Net.
However, there is no guarantee that these segmentation results
have good enough quality, especially due to large histo-image
appearance variation.

2.3. Noise-tolerant U-Net

To alleviate the requirement of accurately segmented histo-
images for U-Net training, we propose to adjust the original
U-Net to be noise-tolerant so that the performance will be ro-
bust to potentially noisy training segmentations. The main
difference of our noise-tolerant U-Net from the original U-
Net is an additional “transition” layer after the softmax out-
put layer to allow noisy labels for training (marked in the red
box in Figure 1). This is motivated by the “label flip noise
model” in a recent noise-tolerant AlexNet-based image clas-
sification framework [18] that addresses a similar noisy label
problem. The difference is that our noise-tolerant U-Net is
for pixel-wise labeling in histo-image segmentation but the
method in [18] is for the whole image classification.

Figure 2 illustrates the added layer to make the U-Net
noise-tolerant, specifically designed for DMD histo-image
segmentation. As we are interested in segmenting muscle,
fibrosis, and other tissue based on red, blue, and white stains,
histo-image segmentation can be considered as three-class
classification problem. The softmax output layer assigns a
corresponding label, denoted by Y k

s , to a pixel k for the
desired true segmentation. The added noise-tolerant layer
allows noisy output labels Yn based on Ys for a given image.
Let qij = Pr(Y k

n = j|Y k
s = i) denotes the corresponding

transition probability from label i to label j for pixel k. The
parameters in this added transition layer can be represented
by a 3 × 3 transition matrix Q =

(
qij
)
3×3 with the con-



straints: 0 ≤ qij ≤ 1 and
∑

j qij = 1, ∀i. Here, we consider
the label flip noise is systematic and inherent to specific seg-
mentation algorithms by which the training segmentations
are derived [19].

Given w training images X = {X1, . . . , Xw} and the cor-
responding noisy segmentation labels Yn, the training of the
added transition layer is motivated by the minimization of the
cross-entropy loss function as in [18]:

L = − 1

K

K∑
k=1

log
[ 3∑
i=1

Pr(Y k
n = j|Y k

s = i)Pr(Y k
s = i|X)

]
= − 1

K

K∑
k=1

log
[ 3∑
i=1

qijPr(Y k
s = i|X)

]
, (1)

where K is the total number of pixels in X . By the to-
tal probability theorem, it is clear that this is equivalent
to the maximum likelihood estimates of involved parame-
ters in the modified U-Net with noisy segmentation Yn as
L = − 1

K

∑K
k=1 log[Pr(Y k

n |X)]. The training of the other
layers simply follows the back-propagation procedure for the
original U-Net. More importantly, we can rewrite

L = − 1

K

3∑
i=1

∑
k∈Si

log
[
Pri(Y k

n = j|X;Q)
]
,

where Si is the set of pixels that have the true label i,
and Pri(Y k

n = j|X;Q) denotes the full model predic-
tion probability for pixel k in Si. Asymptotically when
K → ∞, L → −

∑3
i=1

∑3
j=1 q

∗
ij log[Pri(Yn = j|X;Q)] ≥

−
∑3

i=1

∑3
j=1 q

∗
ij log(q

∗
ij), achieving the minimum when

Pri(Yn = j|X;Q) → q∗ij which is actual flip transi-
tion probability. Denote the confusion matrices for desired
and noisy segmentations by Cs =

(
csij
)

and Cn =
(
cnij
)

respectively, where csij = 1
|Si|
∑

k∈Si Pri(Y k
s = j|X)

and cnij = 1
|Si|
∑

k∈Si Pri(Y k
n = j|X;Q). It is clear

Cn = CsQ. If we know the actual label flip transition
matrix Q = Q∗, minimizing L will asymptotically force
cnij = Pri(Yn = j|X;Q) → q∗ij hence Cn = CsQ

∗ → Q∗

forcing Cs converging to identity. Therefore, training the
noise-tolerant U-net using noisy segmentations with actual
transition matrix Q∗ directly forces the softmax layer to
predict the true labels.

Last but not least, minimizing L does not guarantee Q
converging to Q∗ [18]. In order to derive well-behaved so-
lutions, either a trace norm or a ridge regularization term for
Q can be added to the objective function when training the
noise-tolerant layer. Based on the reasoning in [18], we use
the ridge regularization and fix the corresponding weight de-
cay parameter to 10−4 in our experiments.

3. EXPERIMENTS
From 510 512× 512 spit images of five original DMD histo-
images (one group includes 110 split images and the other
four includes 100 split images), we have held out all 110 split

images from one group as training candidates for U-Net and
all unseen split images would be for performance evaluation
and comparison in our experiments.

We first apply K-Means clustering based on the Euclidean
distances of pixels represented in L*a*b* color space. Three
centroids for the corresponding three desired clusters (shown
as red, blue, and white regions in Figure 3) are randomly ini-
tialized for three times. The K-Means clustering solution with
the lowest within-cluster distance is considered as the final
segmentation for a given split image. The second column in
Figure 3 shows K-Means clustering segmentation results. It
can be seen that K-Means may provide bad segmentations as
illustrated in the bottom split image example, due to color
distribution inhomogeneity. For Otsu’s method, we search
for the optimal threshold for segmentation based on two his-
tograms: one of the pixel intensity and the other of the in-
tensity ratio between the blue and red channels. The thresh-
old by intensity helps separate both muscle (red) and fibrosis
(blue) from the rest (white) of a given image. The threshold
by the blue/red channel ratio separates fibrosis from muscle.
As shown in the third column in Figure 3, the correspond-
ing segmentation results are quite noisy due to the large color
intensity variation within the image.

In order to train the original U-Net, we contacted a clinical
expert to select ten “clean” segmentations by K-Means clus-
tering in 110 training candidates as we do not have completely
labeled images. With the learning rate 10−4, we trained the
U-Net first using all of the ten segmented images and then
using only one of these ten images. It took 7,000 iterations
(700 epochs for ten iterations/epoch) to converge when using
ten training images, and 4,000 iterations (4,000 epochs for
one iteration/epoch) for one training image. The correspond-
ing segmentation results are illustrated in the fourth and fifth
columns in Figure 3, respectively. By consulting with the ex-
pert, these results are better than both K-Means and Otsu seg-
mentations. We also note that the expert considered the results
from the U-Net trained with ten “clean” segmentations typi-
cally have underestimated fibrosis regions while those from
the U-Net trained with one image provides overestimated fi-
brosis, which may be more desirable for subsequent image
quantification.

We further evaluated the segmentations by our noise-
tolerant U-Net. We randomly selected the segmentation
results of 110 training candidates from Otsu’s method as the
“noisy” segmentation for training. As overestimated fibrosis
is clinically preferred, we evaluated both the original U-Net
and noise-tolerant U-Net with a single random training image
to make the comparison fair. We have the same setup for
training the original U-Net as described earlier. For noise-
tolerant U-Net training, we fixed the transition matrix Q to be
the identity matrix for the first 3,200 iterations to train the first
15 layers so that Cn = CsQ → Q∗ and then diffused Q ap-
proaching Q∗ with weight decay. We find that for one training
image, after another 800 iterations for the noise-tolerant layer



Fig. 3. Segmentation results. Column 1: original split images; Column 2: K-Means, Column 3: Otsu; Column 4: U-Net trained
with ten “clean” segmented images: Column 5: U-Net trained with one “clean” segmented image; Column 6: U-Net trained
with one “noisy” segmented image; Column 7: Noise-tolerant U-Net trained with one “noisy” segmented image.

training, the resulting Q can help recover “clean” segmenta-
tion. The comparison of segmentation results by the original
and the noise-tolerant U-Net are shown in the sixth and sev-
enth columns in Figure 3. It is clear visually that both of them
perform better than K-Means and Otsu’s method, moreover
noise-tolerant U-Net outperforming the original U-Net with-
out the noise-tolerant layer, especially at the places marked
in green boxes. The segmentation results by noise-tolerant
U-Net, when trained with “noisy” segmentation, are in fact
consistent with the results by the original U-Net trained with
“clean” segmentation. This clearly shows the potential of our
noise-tolerant U-Net in histo-image segmentation, especially
when manual segmentation is difficult to obtain.

To provide quantitative comparison of segmentation re-
sults, we follow the instruction of [20, 21] to evaluate based
on the uniformity U within clustered regions and disparity D
across regions in L*a*b* color space since we do not have the
ground-truth. For channel c of histo-images, we compute the

average intensity Ac
i =

∑
k∈Ri

Xc
k

Ni
, in which Xc

k is the corre-
sponding channel intensity for pixel k, Ri denotes the set of
pixels belonging to the ith cluster, and Ni is the total number
of pixels in the ith cluster. Let Pi =

Ni∑3
j=1 Nj

. We have

U =

3∑
i=1

{
1

3

3∑
c=1

[∑
k∈Ri

(Xc
k −Ac

i )
2

Ni

]} 1
2

Pi;

D = A2
1P1 −A3

2P2.

Notice that D is computed by the weighted average intensity
differences only between red and blue regions with the corre-
sponding channels as we are mostly interested in muscle and
fibrosis in DMD histo-images [22]. Clearly, the smaller the
U and the larger the D are, the better the segmentation is.
Hence, we evaluate the segmentation results quantitatively by

1 2 3 4 5
KM 0.1240 0.1455 0.2141 0.1876 0.1317
OS 0.1081 0.1735 0.2450 0.1932 0.1660
UN 0.0983 0.1451 0.1908 0.1724 0.1241

UN* 0.1059 0.1611 0.1993 0.1857 0.1649
NTUN 0.0976 0.1486 0.1870 0.1731 0.1315

Table 1. Performance comparison by E for five groups: KM
stands for K-Means; OS for Otsu; UN for U-Net trained with
“clean” segmentation, UN* for U-Net trained with “noisy”
segmentation; and NTUN for noise-tolerant U-Net trained
with “noisy” segmentation.

E = U
D . The comparison of E values for five original histo-

image groups (each includes 100 split images and the training
images are from the third group) is given in Table 1, in which
we have highlighted the entities within one standard deviation
over the least E for each group. Clearly, noise-tolerant U-
Net with noisy training samples and U-Net with clean training
samples are outperforming all the other methods for compar-
ison. Again, even without manual segmentations for training,
our proposed noise-tolerant U-Net can achieve good histo-
image segmentation for further analysis.

4. CONCLUSION
We have proposed a noise-tolerant version of the original U-
Net, which enables “unsupervised” deep learning for reliable
segmentation of histo-images. Our preliminary experimental
results show clear advantages of noise-tolerant U-Net over the
original U-Net and other traditional histo-image segmentation
algorithms. Our future research will focus on more thorough
performance evaluation and exploring more flexible formula-
tions of additional noise-tolerant layers into CNN-based im-
age segmentation algorithms, which will greatly facilitate the
analysis of histo-images in clinical research.
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