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Abstract 
 

To obtain well-dehazed images at the receiver while sustaining low bit rates in the 
transmission pipeline, this paper investigates the effects of image dehazing methods using 
dehazing contrast-enhancement filters on image compression for surveillance systems. At first, 
this paper proposes a novel image dehazing method by using a new method of calculating the 
transmission function—namely, the direct denoising method. Next, we deduce the dehazing 
effects of the direct denoising method and image dehazing method based on dark channel prior 
(DCP) on image compression in terms of ringing artifacts and blocking artifacts. It can be 
concluded that the direct denoising method performs better than the DCP method for 
decompressed (reconstructed) images. We also improve the direct denoising method to obtain 
more desirable dehazed images with higher contrast, using the saliency map as the guidance 
image to modify the transmission function. Finally, we adjust the parameters of dehazing 
contrast-enhancement filters to obtain a corresponding composite peak signal-to-noise ratio 
(CPSNR) and blind image quality assessment (BIQA) of the decompressed images. 
Experimental results show that different filters have different effects on image compression. 
Moreover, our proposed dehazing method can strike a balance between image dehazing and 
image compression. 
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1. Introduction 

Remote video surveillance systems are widely used in people's daily lives, such as in aerial 
imagery [1] and remote sensing [2]. Images of outdoor scenes often suffer from bad weather 
conditions such as haze, fog, and smoke. If a remote portion has a camera located in an 
environment where fog and haze are common (e.g., near an ocean), images taken by the 
camera usually lose contrast and fidelity, because light is absorbed and scattered by turbid 
media such as particles and water droplets in the atmosphere during the process of propagation. 
These images captured by a remote video surveillance system are transmitted to a location or a 
control station where images are either stored or used for real-time surveillance. If a foggy 
image were to be transmitted without any processing, the image quality of the terminal would 
be very poor. Thus, it is necessary to implement image dehazing for remote video surveillance 
systems. In addition, images must be compressed to accommodate low bandwidths or 
low-complexity coders. Therefore, it is significant to study the influence of image dehazing on 
image compression (image coding). 

Dehazing is a process of removing haze from a hazy image and enhancing image contrast. 
Because concentrations of haze vary from place to place and it is difficult to detect in a hazy 
image, image hazing is a challenging task. Early researchers used conventional techniques of 
image processing to remove haze from a single image, such as histogram-based dehazing 
methods [3] [4]. However, dehazing effects are limited, because a single hazy image rarely 
contains sufficient information. Later, researchers attempted to improve dehazing 
performance with multiple images or additional information, such as polarization-based 
methods [5] [6] and methods that obtain multiple images of the same scene under different 
weather conditions [7] [8]. In [9] and [10], dehazing is conducted based on the given depth 
information. These algorithms can estimate scene depths and remove haze effectively but 
require multiple images or additional information, which limits their applications. 

Recently, significant progress has been made in single-image dehazing based on a physical 
model. Tan [11] maximized the contrast of a hazy image, assuming that a haze-free image has 
a higher contrast ratio than a hazy image. However, the dehazed image tended to be 
overcompensated for the reduced contrast, yielding halo artifacts. Fattal [12] proposed 
removing haze from color images by independent component analysis, but this algorithm 
could fail in the presence of heavy haze. A novel haze removal algorithm based on dark 
channel prior (DCP) was proposed by He et al. [13]. The approach is simple and effective in 
most cases. However, noise in the sky could be amplified, and the algorithm is 
computationally intensive because a time-consuming soft matting is applied [14] to refine 
object depths. Some improved algorithms have been proposed to overcome the weakness of 
the approach of He et al. To promote efficiency, Yu et al. [15], Gibson et al. [16], and Xiao 
and Gan [17] replaced time-consuming soft matting with bilateral filtering [18], median 
filtering, and guided joint bilateral filtering, respectively. He [19] proposed guided image 
filtering to replace time-consuming soft matting, and Ancuti et al. [20] changed the 
block-based approach to one based on layer. To improve dehazing quality, Kratz and Nishino 
[21] and Nishino et al. [22] modeled the image with a factorial Markov random field to 
estimate scene radiance more accurately. Meng et al. [23] proposed an effective regularization 
dehazing method to restore a haze-free image by exploring the inherent boundary constraint. 
Tang et al. [24] combined four types of haze-relevant features with random forest and 
proposed a learning-based approach for robust dehazing. Li et al. [25] proposed a weighted 
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guided image filtering (WGIF) method, and Li and Zheng [26] introduced a novel 
edge-preserving decomposition technique to estimate transmission utilizing the WGIF. 

In recent years, in addition to researching single-image dehazing methods, some 
researchers have studied the effects of image dehazing on image compression. The most 
representative work is the research of Gibson et al. [16]. Gibson et al. first artificially added 
fog into a fog-free image and then used DCP [12] to conduct image dehazing before and after 
image compression. Finally, the composite peak signal-to-noise ratio (CPSNR) and blind 
image quality assessment (BIQA) were calculated with the help of the original haze-free 
image. The results show that better performance with fewer artifacts and better coding 
efficiency is achieved when dehazing is applied before compression. The aforementioned 
dehazing methods use many filtering algorithms, include minimum filtering, median filtering, 
bilateral filtering, guided joint bilateral filtering, guided image filtering and WGIF. However, 
Gibson et al. investigated dehazing (before or after image compression) effects only on image 
and video coding; they did not thoroughly discuss the effects of dehazing 
contrast-enhancement filters on image compression. 

Along with the frequent occurrence of hazy weather, the means by which to carry out 
image dehazing and transmission more effectively require urgent attention. Filtering is a 
necessary tool for image dehazing, and the image must be compressed before transmission. 
Therefore, to design an outdoor monitoring system suitable for fog and haze, it is necessary to 
research the effects of dehazing contrast-enhancement filters on image compression. 

In this paper, we will use the DCP image dehazing method from [13] and further investigate 
the effects of two different dehazing methods using dehazing contrast-enhancement filters on 
image compression based on the conclusion of Gibson et al. [16]. Our work is mainly on the 
following four aspects: first, we propose a new method for calculating the image transmission 
function. The single-image dehazing method using this proposed approach is called the direct 
denoising method. Second, we qualitatively analyze the effects of two different image 
dehazing methods (DCP method and the direct denoising method) on image dehazing and 
image compression. Third, four different dehazing contrast-enhancement filters are used to 
dehaze, and a large amount of simulation experiments are conducted to explore the effects of 
their parameters on image dehazing and image compression. Fourth, we improve the direct 
denoising method by using a saliency map as a guidance image to distinguish between the far 
scene and bright area in the close scene. 

The rest of this paper is organized as follows. In Section 2, we will give an overview of the 
image dehazing model and image compression system. In Section 3, a new method for 
calculating the transmission function for single-image dehazing is presented—namely, the 
direct denoising method. The application of dehazing contrast-enhancement filters is also 
introduced. In Section 4, we investigate what happens to a hazy image when it is compressed 
with JPEG and explore the different compression artifacts when two different image dehazing 
methods are applied. In Section 5, we improve the direct denoising method by using a saliency 
map to distinguish between the far scene and bright objects of the close scene. Extensive 
experimental results are reported in Section 6. Finally, conclusions and remarks on possible 
further work are given in Section 7. 

2. Background of Image Dehazing and Image Compression 

2.1 Dehazing Model 
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Almost all popular single-image dehazing algorithms are based on the widely used 
atmospheric scattering model, which was provided by McCartney in 1976 [27] and further 
derived by Narasimhan and Nayar [7] [8]. It can be expressed as follows [11] [12]: 

( ) ( ) ( ) [1 ( )]x x t x t x= + −I J A ,                                                (1) 
where T( )=( ( ), ( ), ( ))r g bx J x J x J xJ  and T( )=( ( ), ( ), ( ))r g bx I x I x I xI  denote the original and 

observed ,  ,  r g b  colors at pixel position x , respectively. T( )=( ( ), ( ), ( ))r g bx A x A x A xA  is the 
global atmospheric light that represents ambient light in the atmosphere. ( ) (0,1)t x ∈  is the 
transmission of reflected light, which is determined by the distance ( )d x  between the scene 
point and the camera, which is called scene depth and is expressed as follows: 

( )( ) e d xt x β−= ,                                                         (2) 
where β  is the scattering coefficient which is dependent on the size of the scattering particle. 

For Eq. (1), ( ) ( )x t xJ  is called the direct attenuation [11], which describes the scene 
radiance and its decay in the medium; [1 ( )]t x−A  is called the airlight (atmospheric veiling) 
[11], and it results from previous scattered light and leads to a shift in scene color. Because 

( )xI  is known, the goal of dehazing is to estimate A  and t , and then ( )xJ  is restored 
according to Eq. (1). In the following analysis of this paper, we assume that scattering is 
homogeneous, which restricts β  to be spatially invariant. Thus, it is worth noting that scene 
depth ( )d x  is the most important parameter for image dehazing. 

2.2 Image Compression Framework 
In this paper, we will explore how compression artifacts are affected when two different image 
dehazing methods using dehazing contrast-enhancement filters are employed before 
compression. The frame of the image compression standard used here is JPEG [28], which 
contains three basic steps: DCT, DCT coefficient quantization, and Huffman entropy encoding. 
The decoding process is inverse process of encoding. The basic JPEG encoding and decoding 
processes are presented in Fig. 1. 
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Fig. 1. Block diagram for JPEG compression. 

 
The process of encoding is shown as follows: 
Step 1. The input image is first converted into the YCrCb color space and then is grouped 

into blocks of size 8 8× . 
Step 2. Before carrying out a blocked discrete cosine transform (BDCT), the input image 
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data are shifted from unsigned integers to signed integers. For ( 1P + )-bit input precision, the 
shift is achieved by subtracting 2P . 

Step 3. Each block is transformed by BDCT; i.e., 
7 7

0 0

1 (2 1) π (2 1) π( , ) ( ) ( ) ( , )cos cos
4 16 16x y

x u y vF u v C u C v f x y
= =

+ +
= ∑∑ ,                     (3) 

1 / 2,  ( , 0)( ), ( )
1,  ( , 0)

u vC u C v
u v

 == 
≠

, , , , 0,1, ,7x y u v =  .                              (4) 

Each block will include 64 DCT coefficients composed of one DC coefficient and 63 AC 
coefficients. 

Step 4. Quantize each matrix block; i.e., 

round
uv

uv
q

uv

FF
Q

 
=  

 
,                                                        (5) 

where uvF  and 
uvqF are DCT coefficients before and after quantization, respectively. uvQ is the 

quantization table. Quantization can cause a loss of image energy, which is mainly 
high-frequency energy, whereas the energy of the image is mainly concentrated in low 
frequencies. Thus, as long as we select an appropriate quantization coefficient, human eyes 
can hardly detect distortion in the decoded image. 

Step 5. After quantization, the DC coefficient of each block is coded in a differential pulse 
code modulation (DPCM). The 63 coefficients are converted into a 1-D zig-zag sequence, 
preparing for entropy encoding. 

3. Dehazing Methods Using Dehazing Contrast-Enhancement Filters 

3.1 Image Dehazing Algorithm Based on Dark Channel Prior 
He et al. [13] discovered DCP based on the observation of outdoor haze-free images: in most 
non-sky patches, at least one color channel has some pixels whose intensities are very low and 
close to zero. He et al. defined these pixels as dark channel; i.e., 

dark ( ) { , , }
( ) min min ( )cy x c r g b

J x J y
∈Ω ∈

 =   
,                                               (6) 

where { , , }c r g b∈  is the color channel index, ( )cJ x  is a color channel of J , and ( )xΩ  is a 
local patch centered at x . According to DCP, dark ( ) 0J x → . It can be derived from the haze 
image model in Eq. (1) that 

( ) ( )( ) 1 ( )x xt x t x= + −
I J

A A
,                                                  (7) 

where atmospheric light A  can be estimated according to the intensity of foggy region pixels. 
Assuming that transmission ( )t x  is smooth, transmission ( )t x  is expressed as ( )t x . A 

morphological multiscale operator is applied to both sides of Eq. (7): 

( ) { , , } ( ) { , , }

( ) ( )min min ( ) min min 1 ( )c c

y x c r g b y x c r g b
c c

I y J yt x t x
A A∈Ω ∈ ∈Ω ∈

   
= + −   

   
  .                         (8) 

Atmospheric light cA  is always positive. According to the characteristics of the dark 
channel whose value of the fog-free image approximately equals 0, it can be derived that 
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( ) { , , }

( )min min 0c

y x c r g b
c

J y
A∈Ω ∈

 
= 

 
.                                                  (9) 

With Eq. (8) and Eq. (9), we can derive the transmission function ( )t x ; i.e., 

( ) { , , }

( )( ) 1 min min c

y x c r g b
c

I yt x
A∈Ω ∈

 
= −  

 
 .                                             (10) 

In practice, even on clear days, the atmosphere is not absolutely free of any particles. Haze 
still exists when we look at distant objects. Moreover, the presence of haze is a fundamental 
cue for humans to perceive depth. This phenomenon is called aerial perspective. If haze is 
removed thoroughly, the image may seem unnatural, and we may lose the feeling of depth. 
Thus, a constant parameter ( 0 1ω< < ) is introduced into Eq. (10) to optionally keep a very 
small amount of haze for distant objects, and the final estimation of the transmission function 
is given by 

coarse ( ) { , , }

( )( ) 1 min min c
y x c r g b

c

I yt x
A

ω
∈Ω ∈

   = −   
   

 .                                       (11) 

In this paper, ω  is fixed at 0.95 for all results reported. A fog-free image can be recovered 
by 

coarse 0

( )( )
max( ( ), )

xx
t x t

−
= +

I AJ A


,                                               (12) 

where 0t  is the minimum value of transmission function coarse ( )t x . 
Fig. 2 lists two groups of foggy images (Goose and House) and dehazed images based on 

dark channel. It can be seen that although the images are dehazed generally, it has obvious halo 
artifacts at occlusion boundaries. This is because the transmission function is not always 
invariant in local regions. 

 

   

   
(a)                                                (b)                                                 (c) 

Fig.  2. Image dehazing based on dark channel prior: (a) original images, (b) transmission function maps, 
and (c) dehazed images. 
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It is worth noting that the commonly used constant assumption on transmission within a 

local image patch is somewhat demanding. For this reason, the patch-wise transmission 
coarse ( )t x  based on this assumption in [13] is often underestimated. From Fig. 2(b), it can be 

seen that the transmission function is very rough, so it must be corrected. Because scattering 
coefficient β  can be regarded as a constant in the homogeneous atmosphere condition, if 
scene depth is given, the transmission coarse ( )t x can be estimated easily according to Eq. (2). In 
most of the neighborhood, the scene depth changes slowly. Only in a small part of the 
neighborhood is there an abrupt change, which is the edge of the transmission function map. A 
rough transmission function requires some fine-tuning in a local patch of scene depth to 
highlight the region (edge) of the abrupt change in depth. 

He et al. [19] proposed an algorithm of guided image filtering, which was applied to 
dehazing. The image is filtered by a preassigned guidance image, and the filtered image has 
similar characteristics to the guidance image. The key assumption of the guided filter is that 
filter output q  is a linear transform of guidance I  in a window kω  centered at pixel k : 

 
,  i k i k kq a I b i ω= + ∀ ∈ ,                                                   (13) 

 
where ( , )k ka b are linear coefficients assumed to be constant in kω , and their specific 
expressions are shown in Eq. (14): 
 

2

1

,   k

i i k k
i

k k k k k
k

I p p
a b p aω

µ
ω

µ
σ ε

∈

−
= = −

+

∑
,                                      (14) 

 
where ε  is a regularization parameter preventing ka  from being too large, kµ  and 2

kσ  are 
mean and variance of I  in kω , ω  is the number of pixels in kω , and kp  is the mean of p  in 

kω . A pixel i  is involved in all windows kω  that contain i , so the value of iq  is not the same 
when it is computed in different windows. A simple strategy is to average all possible values 
of iq : 

:

1 ( ) +
k

i k i k i i i
k i

q a I b a I b
ωω ∈

= + =∑ ,                                           (15) 

where 1

i

i k
k

a a
ωω ∈

= ∑ , and 1

i

i k
k

b b
ωω ∈

= ∑ . 

 
He et al. [19] used the characteristics of the guided filter to fix the rough transmission 

function, which can transfer the texture structure of the guidance image to the input image. By 
using a foggy image and transmission function map as the guidance image and input image, 
respectively, the transmission function map is refined and can be expressed as 

accurate ( ) i i it i a b= +I ,                                                          (16) 
1 1,   

i i

i k i k
k k

a a b b
ω ωω ω∈ ∈

= =∑ ∑ ,                                                   (17) 
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coarse coarse

coarse2

1 ( )
,  k

k
k

k
k k k k

k

t t
a b t a

ξ
ξ ω

ξ µ
ω

µ
σ ε

∈

−
= = −

+

∑ I  

 ,                              (18) 

 
where accuratet  is the refined transmission function, I is foggy image, coarset  is rough 

transmission function in Eq. (11), and coarse
kt  is the intensity average of coarset  in a local patch 

kω  centered at k . 
Fig. 3 shows the experimental results of this method. Comparing Fig. 2(a) with Fig. 3(a), 

transmission function maps of Fig. 3(a) have fewer blocking artifacts and are more accurate 
especially at image edges. The quality of dehazed images in Fig. 3(b) is higher than in Fig. 
2(b). 
 

  

  
(a)                                                                          (b) 

Fig. 3. Image dehazing of DCP method: (a) transmission function maps, and (b) dehazed images. 
 

3.2 Proposed Image Dehazing Algorithm (Direct Denoising Method) 
The essence of the DCP method is to transfer the texture structure of the foggy image to the 
transmission function map, and adjust the depth of the ocal scene. In this paper, a new method 
for calculating the transmission function is presented, and the specific algorithm is shown as 
follows. In this paper, the image dehazing method based on the proposed transmission 
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function is referred to as the direct denoising method. 
First, only one minimal operation is performed on both sides of Eq. (7); that is, 
 

{ , , } { , , }

( ) ( )min ( ) min 1 ( )c c

c r g b c r g b
c c

I x J xt x t x
A A∈ ∈

   
= + −   

   
.                                  (19) 

 
Second, the deformation of Eq. (19) is 
 

{ , , } { , , }

( ) ( )( ) ( ) min 1 minc c

c r g b c r g b
c c

J x I xt x t x
A A∈ ∈

   
− = −   

   
.                                  (20) 

 
Because of one minimal operation is lacking in the neighborhood ( )xΩ , most values of dark 
channel [ ]

{ , , }
min ( )cc r g b

J x
∈

 cannot approximately equal 0. In this paper, [ ]
{ , , }

( ) min ( ) /c cc r g b
t x J x A

∈
−  

is called the scene depth noise ψ , and Eq. (20) takes the following form: 
 

{ , , }

( )( ) 1 min c

c r g b
c

I xt x
A

ψ
∈

 
+ = −  

 
,                                               (21) 

 
where [ ]

{ , , }
1 min ( ) /c cc r g b

I x A
∈

−  is called the transmission function ( )t x . Transmission function 

( )t x  is different from transmission function ( )t x  obtained by Eq. (10). ( )t x  contains 
precise information of the transmission function, but this precise information is disturbed by 
additive scene depth noise. If ( )t x  can be denoised, we can obtain an accurate image 
transmission function. 

Third, because ψ  is negative noise, Eq. (21) requires additive reparation. We can obtain 
rough transmission function coarse ( )t x , which is 

 

coarse { , , }

( )( ) ( ) 1 min c

c r g b
c

I xt x t x
A

ψ ω
∈

 
′= + = −  

 
,                                      (22) 

 
where ψ ′  is the weakened noise, and ω  the is reduction coefficient which is used to set the 
level of noise reduction. 

Finally, except for the large mutation at some boundaries, scene depth is smooth in most 
regions, which is very suitable for edge-preserving image smoothing filtering. In this paper, 
we will use median filtering, non-local means (NLM) filtering [29] and bilateral filtering [18] 
for the proposed transmission function to refine and investigate their effects on image 
compression. 

For bilateral filtering [18], the transmission function accuratet  after denoising is shown by Eq. 
(23): 

 
1

accurate coarse( ) ( ) ( , ) ( , ) ( )
ix

t i k i c x i s x i t x
ω

−

∈

= ∑ ,                                      (23) 
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where k  is the normalizing constant, iω  is a window centered at pixel i , and c  and s  are 
the kernel functions of the bilateral filter. c  measures geometric closeness between the 
neighborhood center i  and a nearby point x , and s  measures the photometric similarity 
between the pixel at neighborhood center i  and that of a nearby point x . ( )k i , ( , )c x i , and 

( , )s x i  are given by Eq. (24) and Eq. (25): 
 

( ) ( , ) ( , )
x I

k i c x i s x i
∈

=∑ ,                                                     (24)

2 2

d r

1 ( , ) 1 ( ( ), ( ))
2 2( , ) e ,   ( , ) e

d x i f x f i

c x i s x i
d

σ σ
   

− −   
   = = ,                                     (25) 

 
where d  is the Euclidean distance between i  and x , ( , )x id  is a suitable measure of distance 
between two intensity values ( )f i  and ( )f x , dσ  is the geometric spread, and rσ  is the 
photometric spread. 

For NLM filtering [29], let ( )v i  be the observed noisy image, where i  is the pixel index. 
The restored values can be derived as the weighted average of all gray values in the image 
(indexed in set I ) 

 
N[ ( )] ( , ) ( )

j I
v i i j v jω

∈

=∑ ,                                                 (26) 

 
where the family of weights { ( , )} ji jω  depends on the similarity between the pixels i  and j  

and satisfy the usual conditions 0 ( , ) 1i jω≤ ≤  and ( , ) 1
j

i jω =∑ . 
The similarity between two pixels i  and j  depends on the similarity of the intensity gray 

level vectors ( )iv N  and ( )jv N , where kN  centered at a pixel k  denotes a square 
neighborhood with a fixed size. This similarity is measured as a decreasing function of the 
weighted Euclidean distance, 2

2,|| ( ) ( ) ||i j av N v N− , where 0a >  is the standard deviation of 
the Gaussian kernel. 

The pixels with a similar grey level neighborhood to ( )iv N  have larger weights on 
average. These weights are defined as 

 
2

2,
2

( ) ( )
1( , ) e
( )

i j a
v N v N

hi j
Z i

ω
−

−
= ,                                              (27) 

 

where 
2
2,

2

|| ( ) ( )||

( )
i j av N v N

h

j
Z i e

−
−

= ∑  is the normalizing constant and parameter h  controls the 

decay of the exponential function. 
Therefore, the transmission function accuratet after denoising is shown by Eq. (28): 
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accurate coarse coarse( ) N[ ( )] ( , ) ( )
x I

t i t i i x t xω
∈

= =∑ ,                                 (28) 

 
Fig. 4 and Fig. 5 show refined transmission function maps and dehazed images, 

respectively, of the proposed image dehazing method using median filtering (Fig. 4(a) and Fig. 
5(a)), NLM filtering (Fig. 4(b) and Fig. 5(b)) and bilateral filtering (Fig. 4(c) and Fig. 5(c)). 

 
 

  
(a) 

  
(b) 

  
(c) 

Fig.  4. Image dehazing of direct denoising method: (a) median filtering, (b) NLM filtering, and (c) 
bilateral filtering; the left images are transmission function maps, and the right ones are dehazed images. 
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(a) 

  
(b) 

  
(c) 

Fig. 5. Image dehazing of direct denoising method: (a) median filtering, (b) NLM filtering, and (c) 
bilateral filtering; the left images are transmission function maps, and the right ones are dehazed images. 

By comparing Fig. 3, Fig. 4, and Fig. 5, the refined transmission function maps obtained 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016                                        3257 

by image-guided filter are clearer than images obtained by three other dehazing 
contrast-enhancement filters. There is a large amount of information in transmission function 
maps refined by guided image filtering. In four dehazing contrast-enhancement filters, the best 
edge-preserving characteristic is the guided image filter, followed by the bilateral filter, 
median filter, and NLM filter. 

By observing dehazed images obtained by using four different dehazing 
contrast-enhancement filters (Fig. 3, Fig. 4, and Fig. 5), the image dehazing method of both 
the DCP method and direct denoising method can obtain clear dehazed images. In addition, the 
dehazed images include more details, and the color is brighter. Therefore, four dehazing 
contrast-enhancement filters can be used for image dehazing. However, there is still a certain 
white outline in Fig. 3(b) and the right images in Fig. 4(b) and Fig. 5(b). The guided image 
filtering and bilateral filtering could obtain more natural dehazed images, as seen in Fig. 3(b) 
and the right images in Fig. 4(c) and Fig. 5(c). 

4. Effects of Image Dehazing Methods on Image Compression 
In this section, we will analyze the effects of image dehazing methods on image compression. 

4.1 Ringing Artifacts 
When an image is decompressed, ringing artifacts will occur when frequency components 

are lost on the compression side. This loss is caused in the quantization step (see Fig. 1 and Eq. 
(5)). Assuming that there is a foggy image I , Eq. (29) can be obtained according to Eq. (12): 

 

( )( )
( )

c c
c c

I x AJ x A
T x

−
= + ,                                                (29) 

 

where ( )T x  is the transmission function obtained by the dehazed methods of the DCP 
method or direct denoising method, and J  is the dehazed image. The DCT transform is 
applied to dehazed image J , 
 

7 7

0 0

1 (2 1) π (2 1) π( , ) ( ) ( ) ( ) ( , )cos cos
4 16 16i c i

x y

x u y vF u v C u C v J x y
= =

+ +
= ∑∑ ,                  (30) 

 
where ( )c iJ  is the thi  matrix block of the dehazed image. 

Using Eq. (29) and Eq. (30), the DCT of the thi  matrix block can be expressed as follows 
 

7 7

0 0

1 (2 1) π (2 1) π( , ) ( ) ( ) ( ) ( , )cos cos
4 16 16

c c
i c i

x y

I A x u y vF u v C u C v A x y
T= =

− + +
= +∑∑ .        (31) 

 

Ignoring the direct-current (DC) component of the DCT transform, the alternating-current 
(AC) components are 
 

7 7

0 0

( ) ( , )1 (2 1) π (2 1) π( , ) ( ) ( ) cos cos
4 ( , ) 16 16

c i c
i

x y i

I x y A x u y vF u v C u C v
T x y= =

− + +
= ∑∑ .          (32) 

The matrices of the DCT transform are quantized by quantization factor ( , ) uvq u v kQ= , 
where k  is the quantization coefficient, and we obtain 
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( , ) 1( , )
( , ) 2

q i
i

F u vF u v
q u v

 
= + 
 

,                                                   (33) 

 

where operator 1 / 2x +    is simply a rounding to the nearest integer operation on x . 
Therefore, when ( , ) / ( , ) 1 / 2iF u v q u v < , the energy of the frequency in ( , )u v  will be 
eliminated. This is also the main reason for the energy loss caused by the JPEG standard. The 
probability of the eliminated energy of the frequency in ( , )u v  is expressed as Eq. (34): 
 

1( , ) ( , )
2iP F u v q u v <  

.                                                    (34) 

 

With Eq. (32) and Eq. (34), we can compute the probability using dehazed AC coefficients; 
i.e., 

 
7 7

0 0

( ) ( , )1 (2 1) π (2 1) π 1( ) ( ) cos cos ( , )
4 ( , ) 16 16 2

c i c

x y i

I x y A x u y vP C u C v q u v
T x y= =

 − + +
< 

  
∑∑ .       (35) 

 

Because the transmission function changes slowly in the local region, the transmission 
function of the thi  matrix block can be treated as a constant ( , )i iT x y T= , and then Eq. (35) 
becomes 

 

[ ]
7 7

0 0

1 1 (2 1) π (2 1) π 1( ) ( ) ( ) ( , ) cos cos ( , )
4 16 16 2c i c

x yi

x u y vP C u C v I x y A q u v
T = =

 + + − < 
  

∑∑ .     (36) 

 

For the convenience of analysis, let , ( )u v XΦ  and ( , )iK x y  be defined as 
 

( , ) ( ) ( , )i c i cK x y I x y A= − ,                                                 (37) 

[ ]
7 7

,
0 0

1 1 (2 1) π (2 1) π( ) ( ) ( ) cos cos
4 16 16u v

x yi

x u y vX C u C v X
T = =

+ +
Φ = ∑∑ .                    (38) 

 

Thus, Eq. (36) can be denoted as 

[ ],
1( , ) ( , )
2u v i iP K x y q u v T Φ < 

 
.                                           (39) 

 

The main difference in the image dehazing methods lies in obtaining different transmission 
functions. For ( , )iK x y , these methods are the same (assuming that atmospheric light cA  is 
accurate). Therefore, according to Eq. (39), under the same ( , )iK x y , the smaller the value of 

iT , the smaller the probability of energy eliminated at the frequency ( , )v u . 
The rough transmission functions obtained by using the method of the DCP method and 

direct denoising method are shown by Eq. (40) and Eq. (41), respectively: 
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coarse ( ) { , , }

( )( ) 1 min min c

y x c r g b
c

I yt x
A

ω
∈Ω ∈

 
= −  

 
 ,                                        (40) 

coarse { , , }

( )( ) 1 min c

c r g b
c

I yt x
A

ω
∈

 
= −  

 
,                                            (41) 

 

Comparing Eq. (40) with Eq. (41), it can be easily derived that 
 

coarse coarse( ) ( )t x t x≥ .                                                     (42) 
 

Because the refined rough transmission function is based on the characteristic that the 
transmission function changes slowly in the local region, we can know that the refined 
transmission function still has the following relationship: 

 

accurate accurate( ) ( )t x t x≥ .                                                   (43) 
 

Combining Eq. (39) with Eq. (43), we can easily obtain the following relationship: 
 

[ ] [ ], accurate , accurate
1 1( , ) ( , ) ( , ) ( , )
2 2u v i u v iP K x y q u v t P K x y q u v t   Φ < > Φ <   

   


 .          (44) 

 
From Eq. (44), we can obtain the following conclusion: compressed dehazed images 

obtained by the DCP method are more likely to have loss of image energy and ringing 
artifacts. 

4.2 Blocking Artifacts 
The cause of blocking artifacts in lossy compression is artificial boundaries between 
neighboring blocks induced by BDCT. We will compare the thi  reconstructed block ( )r

c iJ , 
which is simply a dequantization and inverse BDCT of ( , )q

iF u v ; i.e., 
 

7 7

0 0

1 (2 1) π (2 1) π( ) ( , ) ( ) ( ) ( , )cos sin ( , )
4 16 16

r q
c i i

u v

x u y uJ x y C u C v F u v q u v
= =

+ + 
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 
∑∑ .       (45) 

 

For the convenience of analysis, the dehazing function ( )D ⋅  is defined as 
 

( )( )
( )

c c
c c c

I x AD I J A
T x

−
= = + .                                               (46) 

 

Based on different image dehazing methods, the transmission ( )T x  is defined as 

accurate ( )t x  and accurate ( )t x , respectively. The reconstructed block ( )r
c iJ  can be characterized as 

the original signal plus the reconstruction noise rε , so the reconstructed dehazed image is  
 

final ( )r
c c c rJ D I J ε= = + .                                                  (47) 

 

From Eq. (43), we can see that accurate accurate( ) ( ).t x t x≥  Thus, we can obtain the relationship 
between the dehazed method of the DCP method and the direct denoising method (supposing 
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rε  is same for different methods); i.e., 
 

accurateaccuratefinal final ( )( )[ ( )] [ ( )]c c t xt xD I D I≤


.                                     (48) 
 

With E[ ] 0rε = , the expected value of ( )final cD I  equals cJ , and the variance is  
 

2 2
finalvar[ ( )]

c rc JD I εσ σ= + .                                                  (49) 

where 2var[ ] xx σ= . 
For the signal-to-noise ratio (SNR) on the reconstructed (or decompressed) end of the 

system, we can obtain the inequality shown as follows 
 

accurateaccurate

2 2

( )( ) 2 2SNR SNRc c

r r

J J
t xt x

ε ε

σ σ

σ σ
= ≤ =



.                                     (50) 

 

From Eq. (50), we can see that the image dehazing method using the direct denoising 
method is better than the DCP method. 

Fig. 6 and Fig. 7 show reconstructed images using different image dehazing methods. By 
observing Fig. 4, Fig. 5, Fig. 6, and Fig. 7, the images in Fig. 6 and Fig. 7 have severe noise 
after compression with quantization coefficient 3k = . The reconstructed images using the 
direct denoising method have better subjective visual quality than reconstructed images using 
the DCP method. This is consistent with the previous conclusion in Eq. (44) and Eq. (50). 

 

  
(a)                                                                          (b) 

  
(c)                                                                          (d) 

Fig. 6. Compressed dehazed images using different image dehazing methods: (a) median filtering, (b) 
NLM filtering, (c) bilateral filtering, and (d) guided image filtering. 
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(a)                                                                          (b) 

  
(c)                                                                          (d) 

Fig. 7. Compressed dehazed images using different image dehazing methods: (a) median filtering, (b) 
NLM filtering, (c) bilateral filtering, and (d) guided image filtering. 

5. Improved Direct Denoising Method 
Based on the analysis of Section 3 and Section 4, we can conclude that the direct denoising 
method performs better than the DCP method in image compression. Based on the new 
method of calculating the transmission function in Section 3.2, we will continue to refine the 
transmission function and propose a new image dehazing method based on bilateral filtering. 
For simplicity, transmission function ( )t x  mentioned below is expressed as accurate ( )t x . 

Transmission function ( )t x  is the transmission of reflected light, which is determined by 
scene depth ( )d x . From Eq. (2), we can see that ( )t x  is inversely proportional to the scene 
depth. If ( )d x  is sufficiently large, ( )t x  tends to be very small. In other words, the values of 
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( )t x  are smaller in the far scene and larger in the close scene. However, according to Eq. (22), 
the calculated values of ( )t x  become small if some regions of the hazy image have high RGB 
values. Under these circumstances, objects with a brighter color may be mistaken for the far 
scene, which causes some of the brighter part of the close scene to be very bleak. Thus, it is 
necessary to distinguish between the far scene and high-brightness object in the close scene. 

In one image, the high brightness value object stands out with respect to its neighborhood. 
Therefore, we can roughly distinguish the far scene from the high-brightness value object in 
the close scene by using a saliency map [30]. By analyzing the log-spectrum of an input image, 
Hou and Zhang [31] extracted the spectral residual of an image in the spectral domain and 
proposed a fast method to construct the corresponding saliency map in the spatial domain. 
This model is independent of features, categories, or other forms of prior knowledge of objects. 
Thus, in this paper, we adopt their method to realize distinction. 

To distinguish between the far scene and high-brightness object in the close scene, the 
brightness value of the pixel is also considered when the transmission function is refined. The 
refined transmission function is shown by Eq. (51): 

 

saliency
( )( ) ( ) log(1 ( ))t xt x t x S x
km

= + × + ,                                        (51) 

 
where m  is the average gray of ( )t x , k  is adjustable coefficient, and ( )S x  is the saliency 
map. ( ) /t x km  is used to measure the relative brightness value of pixel points. For the close 
scene with bright colors, log(1 ( ))S x+  will increase the value of the corresponding 
transmission ( )t x . For the far scene, pixel values of ( )S x  approximately equal 0, and 

saliency ( )t x  approximately equals ( )t x . Fig. 8 and Fig. 9 show examples of transmission 
function maps and restored images according to different values of ( )t x . ( )t x  of Fig. 8(a) and 
Fig. 9(a) are accurate ( )t x , whereas Fig. 8(b) and Fig. 9(b) are saliency ( )t x . 
 

 

  
(a) 
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(b) 

Fig. 8. Examples of different transmission functions: (a) accurate ( )t x , and (b) saliency ( )t x . 
 

  
(a) 

  
(b) 

Fig. 9. Examples of different transmission functions: (a) accurate ( )t x , and (b) saliency ( )t x . 
 

From Fig. 8 and Fig. 9, we can distinguish bright objects from the far scene. Our new 
image dehazing method has achieved better dehazing effects: it not only removes mist but also 
well preserves true color and brightness in the close scene. The dehazed images also have 
higher contrast. 
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6. Experimental Results 
In Section 4, this paper qualitatively analyze the effects of two different image dehazing 
methods (DCP method and direct denoising method) on image compression. Four different 
dehazing contrast-enhancement filters are used in two different image dehazing methods: 
guided image filter [19], median filter, NLM filter [29], and bilateral filter [18]. In Section 3, 
subjective experimental results of image dehazing using these dehazing contrast-enhancement 
filters are given. The experimental effects of these dehazing contrast-enhancement filters are 
influenced by their parameters. Thus, in this section, this paper will quantitative analyze the 
effects of aforementioned filters and their parameters on image compression. 

When images are compressed with JPEG, the luminance quantization coefficient and color 
quantization coefficient are 3 in this experiment. We choose the House image as the test image. 
The evaluation criteria are CPSNR and BIQA proposed in [32] for quantitative analysis of the 
experimental results. We calculate CPSNR of the dehazed image and reconstructed image. 
Using different image dehazing methods, we will obtain different dehazed images, and image 
compression bit rates are also different. Thus, we improve BIQA and use the ratio of BIQA 
scores to compression bit rates as the new BIQA. Fig. 10 shows the block diagram of this 
experimental process. 

Direct denoising 
methodDCP method 

Start

Minimum filtering

Dehazing methods

Dehazed images

Foggy images

Image coding

Image decoding

Decompressed 
dehazed imagesCPSNR

Experimental results

End

Adjust filter parameters

BIQA

Median filtering, NLM 
filtering, or bilateral filteringGuided image filtering

 
Fig. 10. Block diagram of experimental process. 
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For the median filter, the window size is the significant parameter. In this paper, we choose 

3 3× , 5 5× , 7 7× , 9 9× , and 11 11×  for testing. Table 1 shows the experimental results. 
From Table 1, a median filter with a 3 3×  window size has the best image processing effect. 
When the window size becomes large, blocking artifacts become serious. 
 

Table 1. Effects of window size of median filter on image compression 
Window size CPSNR (dB) BIQA ( -1bpp ) 

3 3×  26.00 7.1006 
5 5×  25.66 6.7516 
7 7×  25.74 6.6358 
9 9×  25.74 6.5700 

11 11×  25.76 6.5419 
 
For the NLM filter, parameter h  controls the smoothness of the denoising results. For a 

denoised image of size m m× , the size of the patch and research window are n n×  and w w× , 
respectively, and the value of n  is usually 5, 7, 9, or 11. In general, the value of w  meets 
w m<< . Thus, in this experiment, we adopt different parameters, and Table 2 shows the 
image quality of the decompressed image using different parameters. The size of the patch 
does not significantly affect the quality of the decompressed dehazed image, and parameter h  
and the research window size also have little impact on the quality of the image. However, 
these three factors combine to affect the image quality. 

 
Table 2. Effects of different parameters of NLM filter on image compression 

n  w  h  CPSNR (dB) BIQA ( -1bpp ) 
3 3×  21 21×  1 27.60 7.3075 
5 5×  21 21×  1 27.60 7.3137 
5 5×  21 21×  5 27.60 7.2801 
7 7×  21 21×  5 27.60 7.2841 
7 7×  35 35×  10 27.79 7.1895 
9 9×  35 35×  10 27.79 7.1915 
9 9×  35 35×  15 27.79 7.1891 

11 11×  35 35×  15 27.79 7.1877 
11 11×  35 35×  20 27.79 7.1835 

 
The bilateral filter has two parameters: dσ  and rσ . We will fix one and change another to 

research the effects of both parameters on image compression. The fixed values of dσ  and rσ  
are 15 and 0.3, respectively. The guided image filter also has two parameters:ε  and r . We 
will also fix one and change the other to research the effects of two parameters on image 
compression. The fixed ε  and r  are 0.001 and 20, respectively. Fig. 11 and Fig. 12 give 
experimental results of two different filters. 

Fig. 11(a) shows the effect of the bilateral filter on the reconstructed dehazed image with 
different dσ  and fixed 0.3rσ = . With increasing of dσ , the CPSNR and BIQA scores of 
decompressed dehazed images increase slightly. The image quality is almost unaffected by 

dσ . Fig. 11(b) shows the effect of the bilateral filter on the reconstructed dehazed image with 
different rσ  and fixed 15dσ = . With increasing of rσ , not only CPSNR but also the BIQA 
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scores of the decompressed dehazed images decrease. From Fig. 12(a), it can be seen that the 
larger the value of r , the better the image quality. From Fig. 12(b), it can be seen that the 
larger the value of ε , the worse the image quality. 
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(b) 

Fig. 11. Effects of bilateral filter parameters on image compression: (a) effects of dσ  on CPSNR and 
BIQA, and (b) effects of rσ  on CPSNR and BIQA. 

 
Comparing Table 1, Table 2, Fig. 11, and Fig. 12, we can see that the image quality of the 

decompressed images processed by the NLM filter are the best among the images processed 
by four different dehazing contrast-enhancement filters. These experimental results are 
consistent with the conclusions of our analysis in Section 4. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 7, July 2016                                        3267 

0 5 10 15 20 25 30 35 40
25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27
C

P
S

N
R

 r

 

 

0 5 10 15 20 25 30 35 40
6.4

6.45

6.5

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95

7

B
IQ

A

CPSNR
BIQA

 
(a) 

0 0.5 1 1.5 2 2.5 3 3.5 4
25

25.2

25.4

25.6

25.8

26

26.2

26.4

26.6

26.8

27

C
P

S
N

R

 ε

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
6.4

6.45

6.5

6.55

6.6

6.65

6.7

6.75

6.8

6.85

6.9

6.95

7

B
IQ

A

CPSNR
BIQA

 
(b) 

Fig. 12. Effects of guided filter parameters on image compression: (a) effects of r  on CPSNR and 
BIQA, and (b) effects of ε  on CPSNR and BIQA. 

7. Conclusion 
The image transmission of an outdoor monitoring system plays an important role in daily life. 
With the increasing frequency of hazy weather, the means by which to obtain a clear image in 
such bad weather conditions at the transmission terminal is an urgent problem to be solved. In 
this paper, we propose a new method for calculating the image transmission function. The 
single-image dehazing method using the proposed method is called the direct denoising 
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method in this paper. We discuss and analyze different effects of the DCP method and direct 
denoising method on image dehazing and image compression. We use four different dehazing 
contrast-enhancement filters to conduct a simulation experiment. The simulation results are 
consistent with the analysis that reconstructed images dehazed by the direct denoising method 
have better image quality. To obtain more desirable dehazed images with higher contrast, we 
improve the direct denoising method by using the saliency map as a guidance image to 
distinguish between the far scene and the bright area in the close scene. Therefore, the 
transmission function is more elaborate, and dehazed images have higher contrast. Finally, a 
large number of experiments have been carried out to explore the influence of different filter 
parameters on image compression. We can draw a conclusion: not only dehazed methods but 
also dehazing contrast-enhancement filters have affected image compression. Our proposed 
and improved image dehazing method can strike a balance between image dehazing and image 
compression. 

In this paper, the analysis is based on a single image. However, in reality, in addition to 
images, outdoor monitoring systems transmit video. Thus, it is necessary to study the 
influence of the method on video compression based on dark channel. In the future, we will 
focus on the influence of dehazing methods on MPEG-x/H.26x compressed video. 
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