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Image Co-Saliency Detection and Co-Segmentation
via Progressive Joint Optimization
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Abstract— We present a novel computational model for simul-
taneous image co-saliency detection and co-segmentation that
concurrently explores the concepts of saliency and objectness
in multiple images. It has been shown that the co-saliency
detection via aggregating multiple saliency proposals by diverse
visual cues can better highlight the salient objects; however,
the optimal proposals are typically region-dependent and the
fusion process often leads to blurred results. Co-segmentation
can help preserve object boundaries, but it may suffer from
complex scenes. To address these issues, we develop a unified
method that addresses co-saliency detection and co-segmentation
jointly via solving an energy minimization problem over a graph.
Our method iteratively carries out the region-wise adaptive
saliency map fusion and object segmentation to transfer useful
information between the two complementary tasks. Through
the optimization iterations, sharp saliency maps are gradu-
ally obtained to recover entire salient objects by referring to
object segmentation, while these segmentations are progressively
improved owing to the better saliency prior. We evaluate our
method on four public benchmark data sets while comparing it to
the state-of-the-art methods. Extensive experiments demonstrate
that our method can provide consistently higher-quality results
on both co-saliency detection and co-segmentation.

Index Terms— Co-saliency detection, co-segmentation, locally
adaptive proposal fusion, energy minimization, joint optimiza-
tion.

I. INTRODUCTION

IMAGE co-saliency detection and object co-segmentation
are two fundamental and active research topics in com-

puter vision and image analysis. They are highly relevant
but different. Co-saliency detection is a weakly supervised
extension of saliency detection to locate the eye-catching
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Fig. 1. (a) A pair of images for co-saliency detection. (b) The ground truth.
(c) ∼ (e) Three saliency proposals generated by DSR [6], MR [7], and SpC [8]
respectively. (f) The detection results by the fusion-based method SACS [9].
(g) The detection results by our method.

regions that are commonly present in multiple images. Com-
pared to single-image saliency detection, co-saliency detection
leverages not only intra-image but also inter-image evidence
to better highlight regions of interest. As a key component of
image analysis, it is essential to a broad set of applications,
such as object detection [1], co-localization [2], and video
compression [3]. In a different manner, object co-segmentation
focuses on jointly extracting common objects from a group of
images. It has been studied extensively, since it can borrow
signal strengths across images to improve segmentation and
it enhances action extraction [4] and image matching [5].
In this work, we investigate the strengths and weaknesses of
co-saliency detection and co-segmentation. Motivated by the
close relationship between the two tasks, we derive a new
unified approach to solve them simultaneously. In this way,
the complementary information can be transferred between
both tasks to improve their performances.

We motivate our joint co-saliency detection and
co-segmentation by first considering the requirements to
achieve high-quality co-saliency detection. To capture
complex image content, many modern co-saliency methods
favor fusing multiple (co-)saliency proposals, each of
which is generated from particular saliency evidence,
via either fixed-weight summation [10]–[12], fixed-weight
multiplication [8], [12] or adaptive-weight summation
[9], [13]. Fig. 1(c) ∼ Fig. 1(e) show different saliency
proposals generated by the method DSR [6], the method
MR [7], and using the multi-image spatial cue (SpC) [8],
respectively. None of them gives satisfactory results. The
algorithm SACS [9] implements adaptive weighted summation
of the three proposals, and significantly improves the detection
results as shown in Fig. 1(f). Despite the effectiveness of
proposal fusion, two major issues arise. First, the fusion-
based methods mentioned above are of map-wise fashion;
Namely, the fusion weights are assigned to the whole saliency
proposals. However, the optimal saliency proposals often
vary from image region to region, as mentioned in our
prior work [14], [15]. Secondly, weighted combinations of
different saliency proposals typically lead to blurred results,
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Fig. 2. Our approach enables the progressive improvement of co-saliency detection and co-segmentation. (a) & (f) Two images and the ground truth for
co-saliency detection. (b) ∼ (e) The results of co-saliency detection (top row) and co-segmentation (bottom row) at the first four iterations for the image in
(a). (g) ∼ (j) The results for the image in (b).

especially near the surrounding areas of objects. The evidence
of objectness from co-segmentation can guide region-wise
saliency proposal fusion and help recover sharp object
boundaries [15]. Our approach can integrate co-segmentation
into co-saliency detection, and achieves the superior results
displayed in Fig. 1(g).

The second motivation of our method is that object
co-segmentation often suffers from large intra-object vari-
ations or complex background, which may lead to over-
or under-segmentation. Saliency detection identifies the focus
in images by human visual processing. The detection results
provide important evidence for figure-ground separation in
image segmentation, which alleviate the ambiguity caused by
large intra-object variations or complex background. Thus,
(co-)saliency detection can serve as an intrinsic component
of object (co-)segmentation to improve performance.

The mutual dependency between co-saliency detection and
co-segmentation motivates a unified approach to accomplish
the two tasks simultaneously with the complementary informa-
tion transferred between them to help each other. Our method
optimizes a coupled objective function over a graph structure
that links the two tasks. Through alternating optimization,
the concept of objectness attained via co-segmentation helps
the region-wise proposal fusion to better highlight salient
regions. Meanwhile, the improved co-saliency maps enhance
co-segmentation with more favorable saliency priors. Fig. 2
shows an example of the progressive improvement of co-
saliency detection and co-segmentation by our method. Given
a pair of images in Figs. 2(a) and 2(f), our method carries
out co-saliency detection and co-segmentation simultaneously.
At the first iteration, the co-saliency detection results inherit
the noise from different saliency proposals, while the co-
segmentation masks contain some false positives. Through
the optimization process, co-saliency maps of higher qual-
ity are attained with less false positives and sharper object
boundaries. Meanwhile, gradually improved co-segmentation
masks are obtained and used to guide saliency detection at
the next iteration. At the end, both tasks help each other to
stable high-quality solution after a few iterations as shown
in Figs. 2(e) and 2(j).

II. RELATED WORK

We review relevant topics to the development of our
approach in this section, including saliency detection, co-
saliency detection, and co-segmentation.

A. Saliency Detection

The literature of saliency detection is extensive. Methods
for saliency detection can be roughly sorted into human

visual attention prediction [16]–[20] and salient object detec-
tion (SOD) [6], [7], [21]–[38]. Methods for visual attention
prediction usually generate a heat map consisting of blob-
like regions indicating the eye-fixation likelihood. Inspired by
human visual systems, Itti et al. [16] presented a pioneering
saliency detection model based on local contrast computed
from the center-surround differences across multiple scales.
Borgi and Itti [18] fused complementary global rarity cues of a
scene and local contrast evidence in both the RGB and L∗a∗b∗
color spaces to enhance the performance. Without using any
image features or high-level priors, Hou and Zhang [17]
defined the saliency through the residual on the Fourier domain
of an input image; and Xia et al. [19] thought using spatial
domain residual is more correlated to our visual attention.
Visual fixation methods usually spotlight object boundaries
because the design principles abide human visual systems to
target on the place of rapid scene change first; thus it is not
as suitable as salient object prediction to support a wide-range
of multimedia applications by showing regions of interest.

Salient object detection (SOD) aims to spotlight entire
salient objects, instead of merely their boundaries or dis-
criminative parts in visual attention prediction. To separate
the conspicuous foreground from the background, traditional
methods highly rely on the contrast cues. For instance,
Achanta et al. [21] approximated saliency based on the
deviation between a low-pass filtered image and the average
color of the whole image. Perazzi et al. [24] jointly con-
sidered the color contrast with surrounding pixels and the
spatial compactness of saliency distribution. Besides pixel-
level saliency models, several region-based models, e.g. [6],
[7], [22], [23], [25]–[29], [31], were developed to reduce
the computation load and ease the influence of image noise.
In addition to low-level features, Shen and Wu [25] further
took high-level knowledge, such as face locations and center
priors, into account. Some approaches to saliency detection,
such as [6], [7], and [26], concentrated on the derivation of
correct background. Specifically, these approaches consider
regions near image boundaries as background and predict a
superpixel as salient or non-salient based on its difference
from the background. Zhu et al. [29] further integrated global
contrast with the improved background priors to achieve
better performance. Moreover, methods based on graph-based
clustering, e.g. [23], [28], [31], were proposed to better
locate the potential objects. Stemming from the unsupervised
nature, the performance of these methods based on either
the learned or handcrafted features for single-image saliency
detection is still limited.

Recent research efforts, e.g. [32]–[36], have been made to
use convolutional neural networks (CNN) for saliency detec-
tion. Due to the availability of large-scale training data such as
ImageNet, the features learned by CNN for object recognition
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usually give better performance than conventional handcrafted
features. As mentioned in [39], recent models [34], [36]
based on fully convolutional networks (FCN) [40] can achieve
superior saliency inference by incorporating the contextual
image information with end-to-end learning. With the intrin-
sic interdependence between saliency detection and semantic
image segmentation, some methods, e.g. [33], have formu-
lated a multitask objective for joint feature learning for such
two correlated tasks. However, CNN-based methods rely on
labeled training with object masks or extra information sources
for tuning the deep models, which are generally unavailable
in saliency detection, and such heavy annotation cost makes
these methods less practical. To alleviate the requirement of a
large set of training masks, weakly supervised salient object
detection becomes widely studied to infer the exact object
locations given only training images with weak image-level
labels [37], [38]. However, it is restricted to detecting saliency
objects whose categories have been covered by training data.

B. Co-Saliency Detection

Co-saliency detection is another branch of weakly
supervised extension of single-image saliency detection by
exploring the visual cues shared across multiple images to
identify salient objects better. Chang et al. [41] formulated
co-saliency as a combination of intra-image saliency and inter-
image repetitiveness. Fu et al. [8] proposed a clustering-based
algorithm for co-saliency detection by considering intra-cluster
evidence such as pixel distribution, contrast, and correspon-
dences. Then, co-saliency is carried out via Bayesian inference
of each pixel belonging to the clusters. To prevent detecting
common background as salient foreground, Zhang et al. [42]
incorporated object proposals from other image groups into
the testing group to better distill the intra-image contrast and
intra-group consistency to generate the co-saliency score in
a Bayesian framework. Different from the existing methods
that focus on RGB images and assume all images contain co-
salient objects of a single category, Cong et al. [43] proposed a
novel co-saliency detection model for RGBD images, whereas
Yao et al. [44] used an efficient clustering-based principle to
achieve multi-class co-saliency detection on cluttered datasets
that contain an arbitrary number of object categories. Despite
their effectiveness, co-saliency detection remains a challenging
task in practice due to various unfavorable image variations,
such as small objects or background clutters.

A research trend in saliency detection lies in fusing a
set of saliency proposals, each of which is obtained based
on particular image evidence. The fused saliency map is
derived to leverage the most information with these proposals
while excluding their individual biases. Li et al. [10] and
Fu et al. [8] respectively proposed normalized summation and
multiplication to combine saliency proposals; however, simple
arithmetic operations are insufficient to effectively wipe out
non-salient regions as well as keep the salient foregrounds.
Hence, Cao et al. [9], [13] sought adaptive fusion weights
based on a low-rank constraint on different salient foreground
color content. Huang et al. [30] obtained multi-scale saliency
proposals and fused them via the low-rank constraint to extract
the shared intrinsic saliency information.

The aforementioned fusion-based methods carry out image-
wise proposal fusion, while the optimal saliency proposals
often vary from region to region. To address this issue,
Tsai et al. [14] formulated adaptive region-wise fusion as an

optimization problem where local consensus, spatial consis-
tency and global correspondence are jointly taken into account.
Huang et al. [45] adopted a hybrid strategy that adaptively
selects a summation or multiplication fusion scheme for each
superpixel. Despite the effectiveness, the common drawback
for fusion-based approaches, e.g. [9], [14], [30], [45], is that
the resultant saliency maps are typically blurred, especially
near the object boundaries. Thus, post-processing is often
required; but it is ad-hoc and may degenerate the performance.

Segmentation or boundary detection has been commonly
integrated into co-saliency detection e.g. [11], [15], [46]–[48]
to enhance the performance since foreground segments directly
gives estimated objects in a secne. Li et al. [11] applied
GrabCut [49] to multi-scale initialization windows, and utilize
the commonly appeared segment-based object proposals for
intra-image saliency estimation. Jerripothula et al. [48] utilized
the segmentation masks to adaptively determine the penalty
for superpixels in fusing saliency proposals. However, these
methods derive image segmentation and saliency detection in
separated steps. Hence, complementary information between
image segmentation and saliency detection cannot be mutually
transferred to enhance each other’s performance.

C. Image Co-Segmentation

Image co-segmentation is closely related to co-saliency
detection as it targets at segmenting the common but not nec-
essarily salient parts across multiple images. Rother et al. [50]
introduced the pioneering work of co-segmentation by mini-
mizing the unnormalized foreground histogram dissimilarity
in Markov random field (MRF). Hochbaum and Singh [51]
used a sub-modular rewarding term to encourage simi-
lar pixels having same labels and efficiently solved it by
graph-cut. Joulin et al. [52], [53] utilized discriminative clus-
tering to separate the common foreground superpixels from the
background.

Co-saliency detection can be adopted in the pre-processing
step of co-segmentation, and replaces the interactive supervi-
sion process. It provides the prior knowledge of the common
objects in multiple images, and can deal with the difficulties
due to complex background and large intra-object variations.
Chang et al. [41] introduced a co-saliency guided method for
co-segmentation by taking into account foreground similarity
and figure-ground dissimilarity. Yu et al. [54] used a Gaussian
mixture model (GMM) to compute figure-ground statistics, and
embedded co-saliency information in the unary term of MRF
for co-segmentation.

Saliency information can also be used to improve the
object appearance models and enhance co-segmentation. For
instance, Fu et al. [55] used depth enhanced co-saliency maps
for co-segmentation. Meng et al. [56] cast co-segmentation as
the shortest path problem on a directed graph constructed
by referring to object proposals, region similarities, and
co-saliency information. Rubinstein et al. [57] built several
energy terms by using saliency and correspondence infor-
mation for co-segmentation. To reduce the interference from
similar backgrounds in images, Han et al. [58] proposed an
optimization framework where background knowledge derived
from boundary superpixels is exploited for co-segmentation.
However, treating prior knowledge generation separately from
the segmentation process potentially impedes the effective and
adaptive transfer of useful information across different tasks.
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Fig. 3. The proposed framework for joint co-saliency detection and co-segmentation. Given images of a particular object category, we process the input images
by compiling their superpixel representation, extracting features from the superpixels, and computing a set of saliency proposals. The proposed approach takes
the processed data as input, and performs alternating co-saliency detection and co-segmentation until convergence.

Co-saliency detection and co-segmentation are highly rel-
evant to each other. Their combination has been explored in
existing methods. Nevertheless, these methods treat the two
tasks as separated steps. Thus the combination is unidirec-
tional. Namely, these methods either use co-segmentation to
improve co-saliency detection, e.g. [11], [15], [46]–[48], or
leverage co-saliency detection to help co-segmentation, e.g.
[41], [54]–[58]. Our approach instead enables simultaneous
co-saliency saliency and co-segmentation. It bidirectionally
links the two tasks in the domain of superpixels whose pair-
wise relationships are modeled by a graph. The joint objective
function on both tasks is designed on the graph. Through
an alternating optimization process, both tasks are progres-
sively improved via sharing information. As an unidirectional
approach, our prior work [15] integrates prior knowledge
attached via segmentation into region-wise proposal fusion for
saliency detection. We will show in the experiments that this
bidirectional method here consistently outperforms our prior
work [15] for co-saliency detection. More importantly, this
work further improves co-segmentation with the integration
of co-saliency detection, and make extension to four datasets.

III. PROPOSED METHOD

We introduce our method in this section. First, the problem
definition is given. Then, the steps of image processing,
feature extraction, and graph construction are applied to the
input images. Finally, the proposed objective function for
joint co-saliency detection and co-segmentation as well as its
optimization are specified.

A. Problem Definition

Considering a set of n images I = {I1, I2, · · · , In},
we apply several existing (co-)saliency detection algorithms,
e.g. [6]–[8], [27], [29], to obtain M saliency proposals for
each image. Each image I j is decomposed into N j superpixels,
which serve as the domain of joint co-saliency detection and
co-segmentation because they preserve intrinsic image struc-
tures and abstract unnecessary details. Total N = ∑

j N j , j ∈
{1, 2, · · · , n} superpixels are yielded for the image set I.

For co-saliency detection, our goal is to seek a plausible
weight vector yi = [yi,1 yi,2 . . . yi,M ]� ∈ [0, 1]M for
each superpixel i ∈ {1, 2, · · · , N} to accomplish the saliency
detection by region-wise combining the M saliency proposals.
For co-segmentation, we optimize the segmentation masks
represented by superpixel figure-ground indicators zi ∈ {0, 1},
i ∈ {1, 2, · · · , N}.

Fig. 3 illustrates our framework where co-saliency detection
and co-segmentation are carried out simultaneously. By itera-
tively transferring useful information to regularize each other,
both tasks are progressively improved and converge rapidly to
favorable results. For instance, in Fig. 3, most of our adopted
saliency proposals, especially the multiple-image saliency pro-
posals, are interfered by the common background regions
across images, such as lake areas. Thanks to the collaborated
and iterative refinement framework, potential adversary effect
is minimized in the joint outputs.

B. Superpixel and Feature Extraction

In our implementation, each image I j is decomposed into
N j ≈ 200 superpixels by using the SLIC algorithm [59].
In addition to the color and SIFT [60] features, we also
exploit the deep features produced by the CNN-S network [61]
to describe semantic characteristics of objects. Combining
the three complementary types of features typically results
in more comprehensive description of the co-salient regions.
To extract deep features, we up-sample and concatenate the
feature maps in layers of the CNN-S network, conv_relu1
(96 channels), conv_relu2 (256 channels), conv_relu3
(512 channels), conv_relu4 (512 channels) and conv_relu5
(512 channels), to yield a 1888-dimensional hypercolumn
representation for each pixel. Next, we use the bag-of-
words (BoWs) model for superpixel representation. Specifi-
cally, for color features, the k-means clustering algorithm is
applied to pixels in three color spaces, i.e. RGB, L∗a∗b∗, and
YCbCr, and generates 20 visual words. To ensure having sta-
ble result, we run k-means 20 times, and select the clustering
with the minimal sum of the squared distances between data
and their cluster centers. The color BoWs representation of
the i -th superpixel hc

i is then a 20-dimensional histogram.
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The SIFT and deep BoWs representations, denoted by hs
i

and hd
i respectively, are similarly set. Lastly, we concatenate

them and yield a 60-dimensional feature representation for the
i -th superpixel, hi = [hc

i , hs
i , hd

i ]. The similarity between two
superpixels i and î is defined by

s(i, î) = exp(−χ2(hi , hî )

σ
), (1)

where the constant σ is set to the average pair-wise distance
between all superpixels under this feature representation.

C. Graph Construction

A graph G = (V = ∪ V j , E = ∪ E j ) is constructed
to encode the spatial relationships among superpixels. V j
corresponds to all the superpixels in I j , thus |V| = N . Edge set
E j represents the adjacency relationships between superpixels
in V j . Namely, edge eiî ∈ E j is added for linking vi and v î if
superpixels i and î in I j are spatially connected. We set the
weight of edge eiî as

A(i, î) = s(i, î) ∗ b(i, î), (2)

where b(i, î) is the counts of pairs of adjacent pixels across
the boundary of superpixels i and î . The design of the
edge weights is crucial. Considering both the content and
shared boundary lengths of superpixels can better describe
the inherent structure of images, and boost the performance.
With affinity matrix A ∈ R

N×N in (2), the associated graph
Laplacian L ∈ R

N×N can be computed.

D. Objective Function

We seek plausible weights Y = [y1 y2 . . . yN ] ∈ R
M×N

for superpixel-wise saliency map fusion as well as figure-
ground configuration Z = [z1 z2 . . . zN ] ∈ {0, 1}N for co-
segmentation by minimizing the following objective function:

J (Y, Z)

= �Y�2
2 + α1

∑

i:vi ∈V
U(yi ) + α2

∑

1≤ j< ĵ≤n

D(z j , z ĵ )

+ α3

∑

i:vi ∈V
C(yi , zi ) + α4

∑

eiî ∈E
B1(yi , yî )

+ α5

∑

eiî ∈E
B2(zi , zî )

s.t. �yi�1 = 1, yi ≥ 0̄, zi ∈ {0, 1}, for 1 ≤ i ≤ N, (3)

where 0̄ is an all-zero vector, and α1, α2, α3, α4 and α5 are five
positive constants. z j = {zi |i ∈ Vj } denotes the figure-ground
configuration of image I j . z ĵ is similarly defined. Real-valued
yi,m ∈ [0, 1] is the fusion weight of saliency proposal m on
superpixel i . Binary variable zi takes value 1 if superpixel
i belongs to the foreground, and 0 otherwise. Y and Z are
optimized jointly so that the useful information can be shared
for transferring object-aware boundaries from co-segmentation
to co-saliency as well as transferring saliency priors from co-
saliency to co-segmentation. In (3), U(yi ) and B1(yi , yî ) are
the unary and pairwise terms for co-saliency detection, respec-
tively. D(z j , z ĵ ) and B2(zi , zî ) are the discriminative and
pairwise terms for co-segmentation, respectively. The coupling
term C(yi , zi ) is included to encourage the coherence between

the co-saliency map and the figure-ground co-segmentation.
Lastly, the term ||Y�2

2 is introduced for regularization. These
terms are detailed as follows.

1) Unary Term U(yi ) for Co-Saliency Detection: We follow
the co-saliency formula

Co-saliency = Saliency × Repetitiveness,

to design this unary term. Thus, this term contains two parts
that leverage the intra- and inter-image cues to infer the
goodness of each saliency proposal in terms of saliency and
repetitiveness on superpixel i , respectively. The two parts are
respectively shown in the blue and yellow diagrams of Fig. 4.

For the intra-image cue, we intend to assign a higher weight
to a saliency proposal that is consistent with others. It helps
exclude individual biases. Inspired by [62], we employ a low-
rank formulation to conduct this task. We further generalize
it to locally estimate the quality of saliency proposals. For
superpixel i , we find its K (= 50) spatially nearest superpixels.
See the blue colored region on I2 of Fig. 4 as an example. Let
xi,m ∈ R

256 be a histogram denoting the 256-bin distribution
of saliency values on the saliency proposal m for the region
covered by these K superpixels, i.e. the blue contours in the
blue diagram of Fig. 4. By stacking the M vectors derived from
all the saliency maps, Xi = [xi,1 xi,2 . . . xi,M ] ∈ R

256×M ,
we infer the consistency by seeking a low-rank representation
of Xi . Specifically, robust PCA (RPCA) [63] is adopted to
decompose Xi into a low-rank approximation Ri and a residual
matrix Ei by solving

min
Ri ,Ei

(||Ri ||∗ + λ||Ei ||1), s.t. Xi = Ri + Ei , (4)

where ||Ri ||∗ is the nuclear norm of Ri . λ is a constant and
we set it to 0.05 in this work. After solving (4), we convert
normalized errors Ei = [ei,1 . . . ei,M ] to belief :

bi,m = exp(−||ei,m ||22)
∑M

k=1 exp(−||ei,k ||22)
, for 1 ≤ m ≤ M. (5)

For energy minimization, the associated penalty variable li
computed from intra-image evidence for superpixel i using
the saliency proposal m is then defined by

li,m = exp(1 − bi,m )
∑M

k=1 exp(1 − bi,k)
. (6)

For the inter-image cue, we explore inter-image corre-
spondences to evaluate the property of repetitiveness. Let
ci, j ∈ [0, 1] be the similarity, computed via (1), between
superpixel i and its most similar superpixel î in image I j ,
j ∈ {1, 2, ..., n}. See the bottom part in the yellow diagram
of Fig. 4 for an example where the most similar superpixels
in other images are pointed by black arrows. We take into
account the similarities of all correspondences of superpixel
i , and define the correspondence cue as

ci = mean({ci, j |1 ≤ j ≤ n})
var({ci, j |1 ≤ j ≤ n}) + 1

. (7)

Large ci means that superpixel i is consistently matched
across images and the degree of repetitiveness is high. On the
contrary, low ci implies that superpixel i probably belongs to
distinct background. To make this cue more robust, we nor-
malize {ci } of all superpixels in an image as a probability
indication of recurrent regions.
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Fig. 4. Illustration of the unary term U term for co-saliency detection. See
the text for the details.

Let si,m denote the mean saliency value of saliency proposal
m on superpixel i , the yellow circled region on the saliency
proposals in the yellow diagram of Fig. 4. We prefer saliency
map m if the value of si,m is proportionate to that of ci .
We introduce a variable gi,m that penalizes the case where
just one of ci and si,m is large, i.e.

gi,m = exp((1 − ci )si,m + ci (1 − si,m ))
∑M

k=1 exp((1 − ci )si,k + ci (1 − si,k))
. (8)

The denominator in (8) is used for normalization.
The intra- and inter-image cues on superpixel i and proposal

m, i.e. li,m in (6) and gi,m (8), are combined via

wi,m = exp(li,m + gi,m)
∑M

k=1 exp(li,k + gi,k)
× size(i), (9)

where size(i) is the size of superpixel i . It can be observed
that a lower penalty wi,m implies that the m-th saliency
proposal on superpixel i is more reliable, so a higher fusion
weight yi,m should be assigned to minimize the energy cost.
Considering all superpixels, this unary term becomes

∑

vi∈V
U(yi ) =

N∑

i=1

w�
i yi = tr(W�Y ), (10)

where wi = [wi,1 . . . wi,M ]� and W = [w1 . . . wN ].
2) Discriminative Term D(z j , z ĵ ) for Co-Segmentation:

This term estimates the quality of figure-ground separation of
images I j and I ĵ , which is parametrized by z j and z ĵ , in a
discriminative manner. Two attributes for being high-quality
figure-ground separation are considered. First, the foreground
appearances of images I j and I ĵ need to be similar. Second,
the foreground and background regions of each image should
be dissimilar.

The feature representation of superpixel i is expressed by
hi = [hc

i hs
i hd

i ], a concatenation of the BoWs representation
from color, SIFT and deep features. Let H f

j denote the

estimated foreground of image I j . Since H f
j is a collection of

superpixels, we represent it by summing the feature represen-
tation of all superpixels that it covers, i.e. H f

j = ∑
zi ∈z j

hi zi ,
where z j is figure-ground configuration of image I j . The
estimated background of image I j is similarly defined as
H b

j = ∑
zi ∈z j

hi (1 − zi ). We adopt the global energy term

in [41] to discriminatively assess figure-ground separation for
a pair of images I j and I ĵ . This discriminative term is designed
below

D(z j , z ĵ ) = �H f
j − H f

ĵ
�2

2 −
∑

k∈{ j, ĵ }
γ1�H f

k − γ2 H b
k �2

2

= R − 2
∑

zi ∈z j ,zî ∈z ĵ

� hi , hî �zi zî

+ 2γ1γ2(1 + γ2)
∑

k∈{ j, ĵ}

∑

zi ∈zk

�hi , H f
k + H b

k �zi

+ (1 − γ1(1 + γ2)
2)

∑

k∈{ j, ĵ}

∑

zi ,zî ∈zk

�hi , hî �zi zî ,

(11)

where R is a constant and is irrelevant to optimization. γ1
controls the relative importance of foreground-background
dissimilarity. γ2 is set to the ratio between the foreground
and background regions and is not a tuneable parameter.
To make sure that the graph-cut algorithm [64] can be adopted,
this term must satisfy the regularity condition [64]. Namely,
the coefficient (1 − γ1(1 + γ2)

2) must not be larger than 0.
Following [41], we set γ1 to 1

(1+γ2)2 and let γ = γ2
(1+γ2)

. This
discriminative term D becomes

D(z j , z ĵ ) = R − 2
∑

zi ∈z j ,zî ∈z ĵ

�hi , hî �zi zî

+ 2γ
∑

k∈ j, ĵ

∑

zi ∈zk

�hi , H f
k + H b

k �zi . (12)

In (12), the value of γ depends only on γ2, which is set to the
area ratio between the foreground and background. We will
discuss how to determine the value γ2 later.

3) Coupling Term C(yi , zi ): This term encourages the
coherence between the co-saliency and co-segmentation
results. For measuring the degree of coherence on superpixel
i , we first compute its mean saliency value by

si =
M∑

m=1

yi,msi,m = y�
i si , (13)

where yi = [yi,1 . . . yi,M ]� ∈ [0, 1]M is the weight vector
for saliency proposal fusion on superpixel i . si,m ∈ [0, 1] is
the mean saliency value of proposal m on superpixel i . Note
that the values of {si,m }M

m=1 are in [0, 1] and vector yi is a
distribution, thus si ∈ [0, 1]. A higher mean saliency value
si implies the higher likelihood of superpixel i belonging to
foreground. To enhance the consistency between co-saliency
detection and co-segmentation, this term, penalizing the cases
where one of si and zi is large while the other is small,
is defined by

∑

vi∈V
C(yi , zi )=

N∑

i=1

[si (1 − zi )+(1−si − π)zi ] × size(vi ),

(14)

where π ∈ [0, 1], called the background shift, is introduced
to adjust the likelihood of background superpixels. It is often
used in co-saliency detection, e.g. [41], [57], to prevent the
trivial solutions that all superpixels are assigned to back-
ground. We will discuss how to set its value in the experiments.
In (14), the sizes of superpixels are also taken into account.
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4) Pairwise Term B1(yi , yî ) for Co-Saliency Detection:
We observe that different saliency proposals have individual
strengths and weaknesses. For instance, proposals based on
the background prior may not work well for objects with
considerable overlap with image boundaries. To address this
issue, this term encourages the neighboring superpixels in
graph G to use similar subsets of saliency proposals. Its
formulation is given below
∑

eiî ∈E
B1(yi , yî ) =

∑

eiî ∈E
A(i, î)�yi − yî�2

2 = tr(Y LY �), (15)

where L is the graph Laplacian of G with affinity matrix A.
5) Pairwise Term B2(zi , zî ) for Co-Segmentation: This

binary term is imposed to enforce the spatial smoothness of
co-segmentation results. It is defined by
∑

eiî ∈E
B2(zi , zî ) =

∑

eiî ∈E
A(i, î)�zi − zî�2

2 = tr(Z L Z�). (16)

E. Optimization

Simultaneously solving the two sets of variables Y and Z
is hard. An alternating strategy is adopted to optimize the
variables in (3). At each iteration, one set of the variables is
optimized while keeping the other fixed, and then their roles
are switched. Iterations are repeated until the convergence of
the energy function values.

1) On Optimizing Y : By fixing Z , the optimization problem
in (3) becomes

J (Y ) = α3

∑

i:vi ∈V
C(yi , zi ) + α4

∑

eiî ∈E
B1(yi , yî )

+ α1

∑

i:vi ∈V
U(yi ) + �Y�2

2

s.t. �yi�1 = 1, yi ≥ 0̄, for 1 ≤ i ≤ N. (17)

The above constrained optimization problem is a quadratic
programming problem. We efficiently solve it by using the
public software CVX [65].

2) On Optimizing Z: By fixing Y , the optimization problem
in (3) is reduced to

J (Z) = α3

∑

i:vi ∈V
C(yi , zi ) + α5

∑

eiî ∈E
B2(zi , zî )

+ α2

∑

1≤ j< ĵ<n

D(z j , z ĵ )

s.t. zi ∈ {0, 1}, for 1 ≤ i ≤ N, (18)

which is a binary labeling problem. The energy function in
(18) is graph representable and regular, and hence can be
efficiently minimized by graph-cut [64].

For initialization, we solve the weights Y for saliency
proposal fusion via (17) with the coupling term C removed.
The saliency maps are generated via region-wise fusing
the saliency proposals with optimized Y . We binarize each
saliency map into foreground-background segmentation via
Otsu’s thresholding method. With the binary maps, the aver-
aged area ratios of the foreground and the background of
images can be measured, then, γ = γ2

(1+γ2)
in (11) is deter-

mined. It follows that the optimization problems in (17) and
(18) can be iteratively solved. The value of the objective func-
tion decreases and converges to a local optimum. To conclude
this section, we summarize our approach in Algorithm 1.

Algorithm 1 The Optimization Procedure of Our Method

IV. EXPERIMENTAL RESULTS

We evaluate the proposed method in this section. The
benchmark datasets used for evaluation are described first.
The adopted evaluation metrics and implementation details are
then given. Finally, the qualitative and quantitative results are
reported, analyzed, and discussed.

A. Datasets

We evaluate our method for co-saliency detection and co-
segmentation on four benchmark datasets. Two benchmarks,
the Image-Pair [10] and iCoseg [66] datasets, are used
for performance evaluation on both tasks. The challenging
Cosal2015 [42] and MSRC [67] datasets serve as the testbeds
for co-saliency detection and co-segmentation, respectively.

1) Image-Pair: This dataset has 105 image pairs with manu-
ally labeled ground truth. Each image pair contain one or mul-
tiple common objects appearing on two distinct backgrounds.
We use the whole dataset for co-saliency detection, and the
subset of 30 pairs used in [68] for co-segmentation.

2) iCoseg: It is a large-scale dataset for both co-saliency
detection and co-segmentation. It contains 38 groups of total
643 images with manually labeled ground truth. Each group
has 4 ∼ 42 images. We use the whole 38 groups for co-
saliency detection and follow [48], [57] using the same 31
groups for co-segmentation. The images of a group contain
single or multiple similar objects with various poses and sizes
on complex backgrounds. Therefore, this benchmark is more
challenging than the Image-Pair dataset for both co-saliency
detection and co-segmentation.

3) Cosal2015: It is the largest and the most challenging
dataset for co-saliency detection. It has 50 image groups,
each of which contains 26 ∼ 52 images, with a total of
2015 images. Images of a group contain objects of a specific
category. Variations caused by different object poses and
scales, background clutters, and uncorrelated objects make this
dataset quite challenging.

4) MSRC: This dataset is widely used for image co-
segmentation. It consists of 14 groups with 418 images.
Each group has about 30 images. Compared with the iCoseg,
instances in each group of the MSRC dataset have higher
appearance variations and less regular object boundaries, such
as the thin branch of a tree. Thereby, this dataset is more
challenging than iCoseg.
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Fig. 5. Deficiency of AP, AUC, and F-measure. (a) & (d) The ground truth
of two examples. (b) & (c) Two saliency proposals for (a). (e) & (f) Two
saliency proposals for (d). Instead, Fw

β can successfully discriminate the map
quality.

B. Evaluation Metrics

Let T P , T N , F P and F N respectively denote the numbers
of true positives, true negatives, false positives and false
negatives when evaluating a predicted binary map with respect
to the ground truth figure-ground segmentation. The precision
(P), recall (R), and the false positive rate (F P R) are respec-
tively defined by

P = T P

T P + F P
, R = T P

T P + F N
,

and F P R = F P

T N + F P
. (19)

To evaluate the performance of co-saliency detection,
we first consider three widely used criteria, i.e. average preci-
sion (AP), area under the ROC curve (AUC) and F-measure
(Fβ ). AUC can be considered as the aggregated statistics from
the receiver operating characteristic (ROC) curve for the true
positive rate (or recall) and false positive rate. AP is the score
computed as the area under the precision and recall curve (PR
curve). The PR and ROC curves are generated by thresholding
the pixels in the predicted co-saliency maps with 256 levels
from 0 to 1. Note that the number of non-salient pixels is
often much larger than the number of salient pixels in saliency
detection. Therefore, AP is more informative than AUC since
AUC is often over-optimistic. Meanwhile, with a self-adaptive
threshold T = μ + σ , where μ and σ denote the mean
and standard deviation of saliency values in a saliency map
respectively, F-measure, defined as

F-measure = (1 + β2) × precision × recall

β2 × precision + recall
, (20)

is obtained by the harmonic mean of the precision and recall,
with β2 = 0.3 to emphasize more on recall as suggested in
[42], [70], and [71].

As pointed out in [72], the traditional measures mentioned
above are less discriminative in some circumstances. Two
such examples are shown in Fig. 5. The saliency proposals
in Figs. 5(c) & 5(f) are perceptually closer to the respective
ground truth in Figs. 5(a) & 5(d). However due to the com-
bination of interpolation, dependency, and equal importance
flaws introduced in [72], the proposals in Figs. 5(b) & 5(e)
may have higher AP, AUC and F-measure scores than those
in Figs 5(c) & 5(f), respectively. To address this issue, we also

adopt a generalized F-measure, i.e. Fw
β [72], defined as

Fw
β = (1 + β2)Pw · Rw

β2 · Pw + Rw
, (21)

which alleviates the hidden flaws of AP, AUC and F-measure
for more objective evaluation of the detected saliency maps.
In the experiment, we set β = 1 in (21) by following the
original setting in [72] that equally weighs the importance
of weighted precision (Pw) and weighted recall (Rw) based
on the similar definitions in (19) with four weighted basic
quantities, i.e. , T Pw , T Nw , F Pw and F Nw , defined as:

T Pw = (1 − Ew) · G (22)

T Nw = (1 − Ew) · (1 − G) (23)

F Pw = (Ew) · (1 − G) (24)

F Nw = (Ew) · G, (25)

where · denotes the inner product, and G and Ew respectively
denote the column-stack representation of the binary ground
truth, and the column-stack weighted error map (defined as
|G − D|, with D being the column-stack representation of the
predicted saliency map) by considering the individual pixel
error according to their relative location and neighborhood
information by referring to the ground truth.

For co-segmentation, we adopt two widely used criteria, i.e.
accuracy (A) and jaccard index (J ). Accuracy is the percent-
age of pixels that are correctly predicted in co-segmentation.
Jaccard index, also named as “IoU", is the ratio of the
intersection to the union of the segmented object and the
foreground in ground truth. The two criteria are defined below

A = T P + T N

T P + T N + F P + F N
and J = T P

T P + F P + F N
.

(26)

C. Implementation Details

For saliency proposal fusion, we choose four single-image
saliency proposals (SISP), i.e. DSR [6], MR [7], DRFI [27]
and RBD [29], together with three multiple-image saliency
proposals (MISP) by distinct co-saliency evidences, i.e. SpC
(Spatial cue), Cor (Corresponding cue) and CoC (Contrast
cue), extracted from the CBCS model [8]. In general, methods
DST, MR, DRFI and RBD measure the saliency based on
feature distinctness between the predicted foreground and the
surrounding superpixels. Thus, they may not perform well
on objects that are connected on image boundaries. DRFI
in comparison gives better results than the other SISPs since
it additionally utilizes the supervised learning approach to
map the local feature vector to a saliency score. Merely
using SISPs may focus on only the salient objects that do
not repeatedly appear across images, and neglect the low-
contrast co-salient objects in images. Therefore, three inde-
pendent co-saliency evidences from methods CBCS are used
to complement the deficiency of SISPs. For instance, the cor-
respondence evidence CoC can detect the co-occurring regions
across images. In short, we select these proposals by jointly
considering their performances, popularity and complementary
effect on proposal fusion. Generally, the more accurate the
saliency proposals, the better the co-saliency detection, which
further benefits the joint co-segmentation task. To generate the
saliency proposals on the respective dataset, we run the source
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TABLE I

QUANTITATIVE RESULTS FOR CO-SALIENCY DETECTION ON THREE BENCHMARK DATASETS. “SI” AND “CS” DENOTE THE METHODS FOR
SINGLE-IMAGE SALIENCY DETECTION AND MULTI-IMAGE CO-SALIENCY DETECTION, RESPECTIVELY. THE BEST RESULT

IS HIGHLIGHTED IN BOLD, AND “-” MEANS NO REPORTED RESULT ON THAT DATASET

code from the corresponding publications with the default
settings.

We evaluate our approach in two different perspec-
tives/tasks on each dataset, namely, co-segmentation guided
co-saliency detection and co-saliency detection guided co-
segmentation with the same optimization model (3). For
fair comparison with the state-of-the-art methods each of
which tunes its parameters for one specific task (co-
saliency detection or co-segmentation) on a dataset (Image-
Pair/iCoseg/Cosal2015/MSRC), we also tune the parameters
of our approach in a task-dataset centric manner, namely
seeking a set of optimal parameter values for each task on each
dataset.

We search for the proper values of the parameters in the
order based on their importance to our model. In addition,
we search for the parameters regarding co-saliency detection
first to provide a proper initialization for co-segmentation. The
resultant order is, α1, α3, π , α4, α2, and α5. One parameter is
tuned while the others are fixed. The tuning process is done
sequentially in the above order and iteratively until the perfor-
mance of the task, co-saliency detection or co-segmentation,
no longer improves. We follow the competing methods such
as [57] by adjusting the background shift per image group on
the iCoseg and MSRC datasets for co-segmentation evaluation.
When solving the optimization for (3), alternating optimiza-
tion scheme of co-saliency detection and co-segmentation is
repeated for a few iterations until the energy in (3) converges.
Our model converges rapidly, so we set the maximum number
of iterations T = 4 in Algorithm 1.

D. Co-Segmentation Guided Co-Saliency Detection

We evaluate the effectiveness of the proposed model for co-
segmentation guided co-saliency detection on the Image-Pair,
iCoseg and Cosal2015 datasets in the following.

1) Image-Pair Dataset: We compare our approach with
seven adopted saliency proposals and other co-saliency detec-
tion methods, including the bottom-up based co-saliency
model CBCS [8] and CSHS [46], the adaptive weight map-wise
fusion-based co-saliency model SACS [9], and our prior work
SGCS [15] based on the same set of the saliency proposals.

We further include the deep learning-based approach DIM [69]
for comparison which uses the stacked denoising autoen-
coder to learn the intra- and inter-saliency information with
a supervised training phase on the auxiliary ASD [21] dataset.
We either reproduce the co-saliency detection results from the
released code [8], [9], [15] or directly get the results from
their Websites [69].

TABLE I shows the overall performance of the evaluated
approaches in different metrics and Fig. 6(a) displays the
PR and ROC curves. We find that fusion-based approaches
consistently improve their saliency proposals by properly
combining these proposals. SACS addresses the inherent
issues of the traditional fixed-weight linear fusion model via
adaptively emphasizing the higher-quality saliency proposals.
Our method further addresses the problems of map-wise
fusion in SACS by using region-wise fusion. Meanwhile,
it enhances the co-segmentation strength by additionally con-
sidering the figure-background distinctness in (11) besides
encouraging only the foreground coherence in SGCS, thus
achieving the best results in all evaluation metrics. Our model
even surpasses the state-of-the-art supervised deep learning
approach DIM with the gains of about 1.2% in AP and 26.1%
in Fw

β .
Fig. 7 visualizes the saliency maps generated by differ-

ent approaches on two image pairs. Taking the second pair
as an example, none of the single-image saliency detection
methods, i.e. DSR [6], MR [7], DRFI [27], and RBD [29],
can get the dominating performance as they either produce
some unfavorable false alarms or miss some object parts.
The proposal Cor [8] searches the corresponding regions and
the proposal CoC [8] looks for the contrast regions across
images. They give relatively clean results in these examples.
However, the saliency maps in the object regions are not sharp
enough and there is noise in background. Method CBCS [8]
jointly takes into account the intra-image CoC, SpC cues and
inter-image Cor, CoC and the SpC cues from the paired
images, which helps suppress the false positives. Method
SACS instead exploits a map-wise fusion of multiple proposals
to yield the final saliency maps. We observe that it often
uniformly spotlights the co-salient regions. We also consider a
variant of our model Ours-iter1, which shows the saliency
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Fig. 6. Performance of co-saliency detection in PR and ROC curves on three benchmark datasets including the (a) Image-Pair, (b) iCoseg, and (c) Cosal2015
datasets. The models adopted to generate our fusion proposals are plotted in dash lines, while the state-of-the-art co-saliency detection methods are in solid
lines.

maps produced by our model at the first iteration, namely
without the aid of co-segmentation. This variant combines
the locally complementary signal strengths from different
saliency proposals, and produces comparable results with the
SACS, which needs an additional post-processing refinement
step. However, without higher level objectness information,
some false positives are present. After turning on the cou-
pling term, our regional fusion additionally seeks consensus
with the co-segmentation results, and it further tackles the
limit of region-wise fusion SGCS. Our model yields the
saliency maps superior to those generated by all the competing
methods.

2) iCoseg Dataset: Next, we evaluate our co-segmentation
guided co-saliency detection on the iCoseg dataset. Fig. 6(b)
displays the PR and ROC curves, and TABLE I shows the
overall evaluation scores. Our approach results in a large
performance gain over seven adopted saliency proposals in all
evaluation metrics. We further compare our approach with sev-
eral powerful co-saliency detection models, including the con-
ventional unsupervised approaches, i.e. CBCS [8], CSHS [46]
and SACS [9], and the learning-based models, DIM [69],
CoDW [42] and MIL [70], with more complex initialization,
such as taking advantage of the deep networks pre-trained
on other datasets or taking negative samples for additional
background images from other groups. It is worthwhile to note
that SACS applying an adaptive combination of the adopted
saliency proposals already generates comparable or superior
quantitative results to the aforementioned learning-based mod-
els, especially on the weighted F-measure scores. As a fusion-
based method, our method achieves even better performance in
all evaluation metrics by integrating the segmentation guidance
into saliency map fusion.

Visual comparison is shown in Fig. 7. It can be observed
that method CBCS is insufficient to handle the cases of
size-varying co-salient objects, changing backgrounds, and
different illumination conditions, especially in the groups of
Cheetah and Salisbury. Single-image saliency detection DRFI,

by training a random forest regressor based on the extracted
over-complete features, gives more preferable results than
CBCS. However, many salient parts are still missing. SACS
achieves significant improvement over CBCS and DRFI
because of its model of self-adaptive weighted fusion. Our
co-segmentation guided region-wise fusion approach collab-
oratively captures the objectness cues and estimates the
region-wise goodness of different proposals, thus yielding
higher-quality co-saliency maps. The good properties of
our co-saliency maps include uniformly highlighted objects
and less false positives. More importantly, our method
gives clearer borders between the salient objects and back-
ground regions, which is favorable for the co-segmentation
task.

3) Cosal2015 Dataset: We compare our method with exist-
ing co-saliency detection approaches and report the overall
statistics in TABLE I and Fig. 6(c). Likewise, our method
is compared with the conventional bottom-up approaches, i.e.
CBCS [8], CSHS [46], the fusion-based approach with the
same set of saliency proposals, SACS [9], as well as the state-
of-the-art method CoDW [42] proposed by the authors who
established this dataset. In this dataset, our method slightly
falls behind or is comparable to SACS [9] and CoDW [42] and
performs favorably against the other competing approaches.
Compared with SACS [9] and CoDW [42], our method has
slightly lower performance in AP, AUC, and Fβ but has better
results in Fw

β . As pointed out in Fig. 5 by [72], the measures,
including AP, AUC, and Fβ , have some limitations and may
lead to inaccurate evaluation; instead, the measure Fw

β gives
judgment more closed to human perception. Furthermore,
CoDW [42] requires a set of object proposals to pre-train
the restricted Boltzmann machines as the feature extractor,
but our method does not require those pre-processing steps.
In SACS [9], a post-processing step is used to refine the object
boundary by suppressing the false positive regions. In contrast,
our method achieve higher Fw

β scores without an extra post-
processing step.
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Fig. 7. (a) Six image groups and object ground truth with left two groups from the Image-Pair dataset, middle two groups from the iCoseg dataset, and right
two groups from the Cosal2015 dataset. (b) ∼ (h) The adopted saliency proposals produced by approaches including (b) DSR [6], (c) MR [7], (d) DRFI [26],
(e) RBD [29], (f) SpC [8], (g) Cor [8] and (h) CoC [8]. (i) ∼ (k) Results by co-saliency detection methods including (i) CBCS [8], (j) CSHS [46], and
(k) DIM [69] on left two groups, MIL [70] on middle two groups, and CoDW [42] on right two groups. (l) ∼ (n) Results by fusion-based approaches including
(l) SACS [9], (m) Ours-iter1: our approach without referring to the co-segmentation evidence, and (n) Ours.

To gain insight into the quantitative results, Fig. 7 visu-
alizes the detected saliency maps with different approaches.
Taking the right image of class “Deer” as an example, we see
the results by the adopted proposals, i.e. DSR [6], MR [7],
DRFI [27], RBD [29], SpC [8], Cor [8] and CoC [8] have their
respective strength even though they do not give satisfactory
results in overall. Specifically, the results by MR and SpC
successfully highlight the deer body but missing the head
region. On the contrary, results by DRFI successfully delineate
the object’s region, but with low figure-background contrast.
Our method adaptively selects the reliable proposals region-
wisely to form a better co-saliency map than the adopted
proposals as well as the SACS by map-wise fusion manner.
Furthermore, we observe the results by the unsupervised state-
of-the-art methods, i.e. CBCS [8], CSHS [46], SACS [9]
and CoDW [42] have many false positives in the background
because the common objects in the cases are similar to the
background. With the segmentation guidance, our method can
more effectively remove the false positives due to the low
figure-background contrast issues in those images.

TABLE II

CO-SEGMENTATION RESULTS IN JACCARD INDEX (J ) AND
ACCURACY (A) ON THE IMAGE-PAIR DATASET

E. Co-Saliency Detection Guided Co-Segmentation

In the following, we evaluate our model for co-segmentation
with the integration of co-saliency detection on the Image-Pair,
iCoseg and MSRC datasets.

1) Image-Pair Dataset: We first evaluate the co-
segmentation performance on the Image-Pair dataset.
TABLE II reports the performances of our method and four
powerful co-segmentation methods, including Jou10 [52],
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Fig. 8. (a) Three image pairs from the Image-Pair dataset for co-segmentation
with the ground truth marked by the contours. (b) ∼ (e) Segmentation results
generated by different approaches including (b) Jou10 [52], (c) Yu14 [54],
(d) Meng13 [56], and (e) Ours.

Yu14 [54], Gao13 [68], and Meng13 [56]. Except for
Jou10, methods mentioned above similarly require the prior
knowledge of foreground by either bounding boxes or saliency
information as in our model. Overall, the performance gain
of our method over Meng13, the best competing method
tailored for paired image co-segmentation, is significant, i.e.
4.2% gain in Jaccard index and 2% gain in accuracy.

In Jou10 [52], both spatial and color features are used
to train a maximum margin classifier with a formulation
combining discriminative clustering and spectral clustering.
An important parameter μ weighs the influence of spatial and
color consistency in the discriminative cost function. To obtain
better results of this model, we tune μ for each of the 30 image
pairs while keep the other settings adopted in the released
code. As shown in the second row of Fig. 8, this method
can identify the common regions, but the results are noisy
because of the complex image appearance. For instance, due
to the lake reflection, this method incorrectly classifies the
reflection as parts of the foreground in the first cdbeabera
image. In addition, Jou10 [52] usually requires more images
to derive a good hyperplane separating foreground instances
from background.

The MRF-based model Yu14 [54] considers individual
image segmentation with the constraints of high foreground
similarity by using the Gaussian mixture models (GMMs).
In this model, image segmentation is similarly initialized
via the co-saliency priors by CBCS [8]. We reproduce their
results with the recommended settings. As shown in the
third row of Fig. 8, this method has fewer false positives
compared to Jou10, but it suffers from the object variations
across images. In fact, it has the lowest Jaccard indices
in TABLE II.

The method Meng13 [56] combines the active contour
method with a rewarding strategy based on both the foreground
similarity and background consistency. We also reproduce their
results with the default settings. As shown in the fourth row
of Fig. 8, this method is more preferable compared to the
previous two competing methods. However, the active contour
segmentation requires extra initial bounding boxes for the
objects of interest. In a different manner, we estimate the
initial object regions via saliency priors obtained by jointly
solving co-saliency detection and co-segmentation. Not only
the foreground similarity but also background consistency
constraints in the perspectives of co-saliency detection and co-
segmentation are taken into account. Both TABLE II and Fig. 8

TABLE III

CO-SEGMENTATION RESULTS IN JACCARD INDEX (J ) AND ACCURACY

(A) ON THE ICOSEG AND MSRC DATASETS

show that our method remarkably outperforms the competing
methods.

2) iCoseg Dataset: Next, we evaluate our method for co-
segmentation on the iCoseg dataset. TABLE III reports the
quantitative results and the left part of Fig. 9 shows visual
comparison among our method and the existing methods
for co-segmentation of more than two images, including
Jou12 [53], Rubi13 [57], and Fu15 [55]. We down-
load each of their co-segmentation masks from the authors’
Websites.

The method Jou12 [53] extends their previous work [52]
to co-segment multiple images that consist of the multiple
objects by an iterative EM algorithm. However, without proper
saliency information, there are still similar issues that back-
ground regions with similar image appearance across multiple
images tend to be considered as objects of interest, leading to
false positives as displayed in Fig. 9(b).

The method Rubi13 [57] addresses the issues for images
with noisy background or irrelevant objects. Using the SIFT
flow and visual saliency, it separates the common objects from
the noisy signals by alternating dense pixel correspondence
inference and foreground estimation. This method with the
aid of saliency information greatly improves the figure-ground
separation compared to Jou12. In Fig. 9(c), we observe that
many background regions in Hot-Balloons and Cheetah images
are successfully excluded. However, single-image saliency
information rather than co-saliency priors obtained from the
image sets may not be sufficient to handle large intra-objects
shape variations as illustrated in the images of Kendo-Kendo.

The method Fu15 [55] solves an energy minimization
problem that integrates the depth cue to help capture common
object regions while excluding complex backgrounds by fusing
several existing RGB-based co-saliency maps via a low-rank
representation [9]. This method works well on removing the
background regions from the foreground; however, it some-
times misses significant foreground regions, as shown in the
group Kendo-Kendo of Fig. 9(d).

Compared to these methods, our model considering co-
saliency and co-segmentation simultaneously achieves the
improved co-segmentation performance. Unlike the competing
method Fu15 with the map-wise integration of multiple
saliency proposals to derive the co-saliency priors, our region-
wise fusion method better integrates locally complementary
saliency proposals, and hence guides and facilitates the fol-
lowing co-segmentation. Along the process of alternating
optimization, better results are achieved with the iteratively
refined co-saliency priors and the guided co-segmentation as
illustrated in Fig. 9(e).

3) MSRC Dataset: We further evaluate our method for co-
segmentation on the MSRC dataset and compare it with the
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Fig. 9. (a) Six image groups from the iCoseg (left three groups) and MSRC (right three groups) for co-segmentation with their ground truth marked by the
yellow contours. (b) ∼ (e) Segmentation results generated by different approaches including (b) Jou12 [53], (c) Rub13 [57], (d) Fu15 [55] on the iCoseg
dataset and Jou10 [52] on the MSRC dataset, and (e) Ours.

models mentioned above that also have reported their results
on the MSRC dataset except for method Fu15. As summarized
in TABLE III, Kim11 yields relatively lower performance
because it decomposes the multi-image co-segmentation prob-
lem into several paired-image graph bi-partition sub-problems
to facilitate parallel computation. The MSRC dataset contains
images of different instances sharing only the same class
information; moreover, many MSRC images have similar back-
grounds, e.g. similar airports frequently appear in the “Plane”
class. These issues make it more challenging for the task of
separating foreground from background on the MSRC dataset.
Differently, our method considers the figure-background dis-
tinctness from all images to ease the potential difficulties in
this situation. In general, our method performs reasonably well
compared with other superpixel-based methods, i.e. Jou10,
Kim11, and Jou12 which may suffer from the superpixel
segmentation error due to the highly complex object content
and its boundary. In contrast, Rub13 is a pixel-based method
using its computed saliency map combined with single-image
Grabcut for co-segmentation, which derives better segmenta-
tion results. In fact, our method is also superpixel-based but
already generates comparable results to the pixel-based method
Rub13, even without additional Grabcut post-processing.

To gain better insight, we display the visual results on the
right side of Fig. 9. Taking the group “Car” for example,
which is relatively more challenging than the other two cases
since it exhibits various view angles on the same types of
objects closely neighboring each other. However, without
proper saliency information, many objects of interest are
mistakenly regarded as the background regions, as shown
in Fig. 9(b) and (d) by the method Jou12 [53] and their
previous work Jou10 [52]. By leveraging saliency informa-
tion, Rub13 is expected to identify objects’ locations more
precisely. However, we observe many background regions are
also included in their results. In comparison, we derive co-
saliency priors from the image sets to target the objects with
large intra-object shape variations on the MSRC dataset. Our
co-saliency priors enable our method to better localize objects.
However, some background is also segmented out, as shown
in the case “Flower.” We expect fine superpixel extraction can
be helpful to reduce the error.

F. Model Analysis

In the following, we evaluate the contribution of each energy
term in (3), conduct the convergence analysis, and discuss the
limitations of our method.

Fig. 10. Ablation studies on the Image-Pair dataset in AP, AUC, and
F-measure (Fβ ).

1) Ablation Studies: Fig. 10 reports ablation studies on
the Image-Pair dataset to investigate the contribution from
each individual energy term to the proposed model. Fig. 11
shows the corresponding visual results. In general, we can
see that adding the energy terms, U , C , B1, D, and B2 to
the objective function in (3) step by step can progressively
improve the results. Initially, we generate the original co-
saliency map by applying the unary term U to locally search
for the proper saliency proposals to fuse. As the energy terms
responsible for segmentation are turned off at this stage,
the corresponding segmentation mask in Fig. 11(b) is shown
as the whole background by default. Next, by turning on the
coupling term C , the co-saliency map in Fig. 11(b) is treated
as object priors for the co-segmentation; meanwhile, it allows
the segmentation mask to guide the region-wise saliency
proposal fusion. By associating the information between the
co-saliency map and co-segmentation mask, we observe high
coherence between the fused saliency map and the segmen-
tation result. Furthermore, after combining the co-saliency
smoothness term, B1, as illustrated in Fig. 11(d), the quality
of the saliency map is improved. Meanwhile, scores in Fig. 10
are also elevated. Next, by adding the discriminative term
D, which helps remove the potential background and recover
the common foregrounds in images, the performance scores
are improved. Finally, the best performance is obtained by
encouraging the smoothness of the segmentation labeling
using B2, as illustrated in Fig. 11(f).

2) Convergence Analysis: The objective function values
in (17) and (18) corresponding to co-saliency map fusion
and co-segmentation in our iteration scheme are plotted
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Fig. 11. Visual illustration of ablation studies. (a) An image from the
Image-Pair dataset and its ground truth for joint co-saliency detection and
co-segmentation. (b)∼(f) Results generated by using different combinations of
the energy terms, including (b) Reg+U , (c) Reg+U+C , (d) Reg+U+C+B1,
(e) Reg + U + C + B1 + D, and (f) Reg + U + C + B1 + D + B2.

Fig. 12. Learning curves during optimizing (3) on the Image Pair dataset.
(a) The objective values of (17). (b) The weighted F-measure scores of
co-saliency detection. (c) The objective values of (18). (d) The accuracy scores
(A) of co-segmentation.

in Fig. 12. Initially, the adopted saliency proposals are inte-
grated to produce a baseline for co-saliency detection, which
provides a good initialization for image co-segmentation.
By conducting the iteration scheme, the co-saliency detec-
tion and co-segmentation results are continually optimized
according to Figs. 12(b) and (d), meanwhile, the energy
curves in Figs. 12(a) and (c) converge rapidly. Since both
the energy curves no longer appear obvious changes after 3
iterations, thus setting the maximum iteration number to 4
is reasonable in our experiments. Note that the reason why
(17) has the lowest energy at the first iteration is that the
coupling term C is off at that iteration. The term C is then
turned on after the first-round co-segmentation masks are
obtained.

3) Limitations: Our method is to combine the advantages
of different saliency proposals for more accurate co-saliency
detection; however, if the majority of the adopted saliency pro-
posals lose their discriminative power toward salient objects,
our fusion might fail due to the group voting scenario embed-
ded in the unary term U . For instance, compared with the
ground truth in Fig. 13(a), the saliency proposal from the
method MR gives more favorable results than the other three
SISM; however, the group voting scenario implicitly forces
our method to trust more on the other methods, leading to the
degenerated fused saliency map shown in the last image of
Fig. 13 row (a). Therefore, how to independently emphasize
the better saliency proposal to fuse can be one interesting

Fig. 13. Some challenging cases/examples where our method fails. (a) Most
of the saliency proposals do not perform well. From left to right, the ground
truth, four adopted SISMs from DSR, MR, DRFI and RBD, and our fused
map are shown. (b) Multiple similar objects are present and/or the goal is
to extract a particular object instance. (c) Objects of interest have complex
shapes or long-thin boundaries.

direction to pursue. Next, Fig. 13 row (b) shows that three
of our co-segmentation results include all the salient objects
instead of the most commonly appearing objects. We find this
is a prevalent co-segmentation problem to the other works as
well since the soccer player appears in 30 out of 31 images in
that group, and the dark-green background and the background
airport also frequently show up among the whole images in
that group. Lastly, Fig. 13 row (c) shows the inherent difficulty
in segmentation, which typically encourages segments with
short boundaries since the penalty we pay is the length of
the cut as mentioned in [74]; however, not all natural objects
have short boundaries, as in the example “Bike.” Furthermore,
some foreground parts can also be mistakenly excluded if
they are assigned to the same superpixels with the back-
ground, like the long-thin Kendo sword in the Kendo group.
In other words, the superpixel size may need to be set for
the appropriate trade-off between segmentation accuracy and
computational complexity, which is beyond the focus of this
work.

V. CONCLUSIONS

In this paper, we have presented an unsupervised learn-
ing framework that simultaneously accomplishes co-saliency
detection and co-segmentation. On the one hand, our method
carries out saliency proposal fusion via jointly exploring the
common object evidence generated from co-segmentation and
the consensus among various saliency proposals. On the other
hand, we take advantage of this joint optimization framework
for an enhanced co-segmentation mask from the improved co-
saliency priors. The benefits of the joint optimization formula-
tion are evident as it produces the high-quality saliency maps
by region-adaptive fusion of multiple locally complementary
saliency proposals, and generates accurate co-segmentation
masks with the aid of the iteratively refined co-saliency
priors. Moreover, unlike existing co-saliency models relying
on additional post-processing to smooth their model outputs,
our formulation has already merged such advantages into
the unified optimization process and generates even superior
results in both tasks evaluated on three respective datasets
under the same evaluation metrics. In future, we plan to apply
deep learning techniques to the proposed segmentation guided
fusion framework for category-specific object detection that
can benefit specific applications where saliency maps or seg-
mentation masks of high quality are appreciated, such as the
passenger-specific salient object detection for the development
of autonomous driving.
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